opravy preklepu

This commit is contained in:
Petr Velycko 2025-05-16 14:00:15 +02:00
parent 714059aa4e
commit 16f27ab91c
Signed by: petrvel
GPG key ID: E8F909AFE649174F
5 changed files with 14 additions and 14 deletions

View file

@ -69,7 +69,7 @@ Z obecného tvaru řešení dostáváme, že $x(t) = \Phi(t) \Phi^{-1}(t_0) x_0$
$$ x(t) = e^{(t - t_0)A}x_0 + \int_{t_0}^t e^{(t - s)A} g(s) ds. $$ $$ x(t) = e^{(t - t_0)A}x_0 + \int_{t_0}^t e^{(t - s)A} g(s) ds. $$
\end{corollary} \end{corollary}
Další otázka, kterou se budeme zabývat je hledání maticové exponenciály. K tomu použijeme takzvaný Jordanův kanonický tvar matice. Další otázka, kterou se budeme zabývat, je hledání maticové exponenciály. K tomu použijeme takzvaný Jordanův kanonický tvar matice.
\begin{theorem} \begin{theorem}
Nechť $A \in \R^{n \times n}$, $J$ její Jordanův kanonický tvar, $A = VJV^{-1}$ a $(\lambda_1, \dots, \lambda_n)$ je diagonála $J$. Potom $e^{tA} = Ve^{tJ}V^{-1}$, kde matici $e^{tJ}$ definujeme jako $diag(e^{t\lambda_1}, \dots, e^{t\lambda_n})$, přičemž $P(t)$ je blokově diagonální matice se stejně velkými a stejně uspořádanými bloky jako $J$ a blok velikosti $k$ matice $P(t)$ je roven Nechť $A \in \R^{n \times n}$, $J$ její Jordanův kanonický tvar, $A = VJV^{-1}$ a $(\lambda_1, \dots, \lambda_n)$ je diagonála $J$. Potom $e^{tA} = Ve^{tJ}V^{-1}$, kde matici $e^{tJ}$ definujeme jako $diag(e^{t\lambda_1}, \dots, e^{t\lambda_n})$, přičemž $P(t)$ je blokově diagonální matice se stejně velkými a stejně uspořádanými bloky jako $J$ a blok velikosti $k$ matice $P(t)$ je roven

View file

@ -60,9 +60,9 @@ V přednášce MA3 jste již studovali tento typ rovnic, teď se však budeme v
Předpokládejme, že řešení není definované na celém $(a, b)$. Potom existují $\alpha, \beta \in (a, b)$ takové, že řešení je definováno na $(\alpha, \beta)$. Toto řešení musí opustit každý kompakt, tedy mimo jiné i $K = [t_0, \beta]\times \overline{B(0, R)}$, kde $R$ je dostatečně velké. Předpokládejme, že řešení není definované na celém $(a, b)$. Potom existují $\alpha, \beta \in (a, b)$ takové, že řešení je definováno na $(\alpha, \beta)$. Toto řešení musí opustit každý kompakt, tedy mimo jiné i $K = [t_0, \beta]\times \overline{B(0, R)}$, kde $R$ je dostatečně velké.
Řešení $x$ splňuje Řešení $x$ splňuje
$$ |x(t)| \leq |x(t_0)| \int_{t_0}^t \| A(s)\| |x(s)| + |g(s)| ds \overset{\begin{subarray}{c}\|A(s)\| \leq L\\|g(s)| \leq \tilde{C}\end{subarray}}{\leq} C + \int_{t_0}^t L|x(s)|C| ds \leq $$ $$ |x(t)| \leq |x(t_0)| + \int_{t_0}^t (\| A(s)\| |x(s)| + |g(s)|) ds \overset{\begin{subarray}{c}\|A(s)\| \leq L\\|g(s)| \leq \tilde{C}\\|x(t_0)|=C\end{subarray}}{\leq} C + \int_{t_0}^t (L|x(s)| + \tilde C) ds \leq $$
Z Gronwallova lemmatu dostaneme Z Gronwallova lemmatu dostaneme
$$ \leq \tilde{C} + C(\beta - t_0) + \int_{t_0}^t L|x(s)| ds \implies |x(t)| \leq \underbrace{[\tilde{C} + C(\beta - t_0) e^{L(\beta - t_0}]}_{R}. $$ $$ \leq C + \tilde{C}(\beta - t_0) + \int_{t_0}^t L|x(s)| ds \implies |x(t)| \leq \underbrace{C + \tilde C(\beta - t_0) e^{L(\beta - t_0)}}_{R}. $$
Došli jsme ke sporu s Větou \ref{thm-leaving-compact}, neboť řešení $x$ nemůže opustit kompakt $K$. Došli jsme ke sporu s Větou \ref{thm-leaving-compact}, neboť řešení $x$ nemůže opustit kompakt $K$.
\end{proof} \end{proof}
@ -83,7 +83,7 @@ Použijeme znalosti lineární algebry k tomu, abychom mohli formalizovat postup
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
Jádro lineárního zobrazení $Lx := x' - Ax$ je vektorový prostor. Dokážeme, že má dimenzi $n$. Nechť $i = 1,\dots,n$ a $x(t_0) = e_i$, pro tuto počáteční podmínku dostaneme řešení $x^i$. Potom $\{x^1, \dots, x^n\}$ tvoří bázi prostoru všech řešení. Skutečně, tyto vektory jsou lineárně nezávislé, mějme lineární kombinaci $c_1 x^1 + \dots + c_n x^n = 0$, speciálně v čase $t_0$ máme $c_1 e^1 + \dots + c_n x^n$, což implikuje, že $c_i = 0$ pro každé $i$. Navíc vezmeme libovolné řešení $z' = A(t) z$, opět zkoumejme stav v čase $t_0$. Máme $z(t_0) = d_1e^1 + \dots d_ne^n$ pro vhodná $d_1, \dots, d_n$. Definujme $y(t) := d_1 x^1(t) + \dots + d_n x^n(t)$, tedy $y$ řeší rovnici $y' = Ay$ a $y(t_0) = z(t_0)$, z čehož díky jednoznačnosti řešení dostáváme $y = z$. Tudíž jsme nalezli $n$-prvkovou bázi, tedy prostor $\mathcal{R}_H$ má dimenzi $n$. Jádro lineárního zobrazení $Lx := x' - Ax$ je vektorový prostor. Dokážeme, že má dimenzi $n$. Nechť $i = 1,\dots,n$ a $x(t_0) = e_i$, pro tuto počáteční podmínku dostaneme řešení $x^i$. Potom $\{x^1, \dots, x^n\}$ tvoří bázi prostoru všech řešení. Skutečně, tyto vektory jsou lineárně nezávislé, mějme lineární kombinaci $c_1 x^1 + \dots + c_n x^n = 0$, speciálně v čase $t_0$ máme $c_1 e^1 + \dots + c_n x^n$, což implikuje, že $c_i = 0$ pro každé $i$. Navíc vezmeme libovolné řešení $z' = A(t) z$, opět zkoumejme stav v čase $t_0$. Máme $z(t_0) = d_1e^1 + \dots d_ne^n$ pro vhodná $d_1, \dots, d_n$. Definujme $y(t) := d_1 x^1(t) + \dots + d_n x^n(t)$, tedy $y$ řeší rovnici $y' = Ay$ a $y(t_0) = z(t_0)$, z čehož díky jednoznačnosti řešení dostáváme $y = z$. Nalezli jsme $n$-prvkovou bázi, tedy prostor $\mathcal{R}_H$ má dimenzi $n$.
\end{proof} \end{proof}
\begin{definition} \begin{definition}

View file

@ -8,7 +8,7 @@ V celé této kapitole budeme uvažovat autonomní rovnici
pro $f$ spojitou a lokálně lipschitzovskou. pro $f$ spojitou a lokálně lipschitzovskou.
\begin{definition} \begin{definition}
Funkci $U: \Omega \to \R$ nazveme \textit{prvním integrálem} rovnice \eqref{eq-auto}, jestliže $U \in C^1(\Omega)$ a je nekonstantní a zároveň $t \to U(x(t))$ je konstantní pro každé řešení $x$ dané rovnice v $\Omega$. Funkci $U: \Omega \to \R$ nazveme \textit{prvním integrálem} rovnice \eqref{eq-auto}, jestliže $U \in C^1(\Omega)$ a je nekonstantní a zároveň $t \mapsto U(x(t))$ je konstantní pro každé řešení $x$ dané rovnice v $\Omega$.
\end{definition} \end{definition}
Například, máme-li rovnici $x'' + kx = 0$ (lze pomocí ní popsat kmitání pružiny s hybností $k > 0$), funkce $V(x', x) = \frac{1}{2}x'^2 + \frac{k}{2} x^2$ je jejím prvním integrálem, neboť tato funkce je zřejmě hladká a nekonstantní a Například, máme-li rovnici $x'' + kx = 0$ (lze pomocí ní popsat kmitání pružiny s hybností $k > 0$), funkce $V(x', x) = \frac{1}{2}x'^2 + \frac{k}{2} x^2$ je jejím prvním integrálem, neboť tato funkce je zřejmě hladká a nekonstantní a

Binary file not shown.

View file

@ -1,15 +1,15 @@
\section{Stabilita} \section{Stabilita}
Lemma \ref{lemma-sol-dist} nám teoreticky poskytuje spojitost řešící funkce v proměnné $x_0$, pro větší $t$ však kvůli exponenciálnímu růstu nemá význam. Budeme proto zkoumat okolnosti, za nichž existují odhady, které se nezhoršují pro $t \in \infty$. Lemma \ref{lemma-sol-dist} nám teoreticky poskytuje spojitost řešící funkce v proměnné $x_0$, pro větší $t$ však kvůli exponenciálnímu růstu nemá význam. Budeme proto zkoumat okolnosti, za nichž existují odhady, které se nezhoršují pro $t \to \infty$.
\begin{definition} \begin{definition}
Nechť $f = f(x, t)$ je spojitá v otevřené $\Omega \in \R^{n+1}$ a navíc lokálně lipschitzovská vůči $x$. Nechť $\Omega \supset \{0\} \times I$ kde $I = (\tau, \infty)$ a nechť $f(0, t) = 0$ pro všechna $t \in I$. Řekneme, že nulové řešení rovnice $x' = f(t, x)$ \eqref{eq-ode} je Nechť $f = f(x, t)$ je spojitá v otevřené $\Omega \in \R^{n+1}$ a navíc lokálně lipschitzovská vůči $x$. Nechť $\Omega \supset \{0\} \times I$ kde $I = (\tau, \infty)$ a nechť $f(0, t) = 0$ pro všechna $t \in I$. Řekneme, že nulové řešení rovnice \eqref{eq-ode} ($x' = f(t, x)$) je
\begin{enumerate}[(i)] \begin{enumerate}[(i)]
\item \textit{stabilní}, jestliže pro všechna $t_0 \in I$ a $\varepsilon > 0$ existuje $\delta > 0$ takové, že $|x_0| < \delta$ implikuje, že $\varphi(t, t_0, x_0)$ je definováno a splňuje $|\varphi(t, t_0, x_0)| < \varepsilon$ pro $t \geq t_0$; \item \textit{stabilní}, jestliže pro všechna $t_0 \in I$ a $\varepsilon > 0$ existuje $\delta > 0$ takové, že pro $|x_0| < \delta$ platí, že $\varphi(t, t_0, x_0)$ je definováno a splňuje $|\varphi(t, t_0, x_0)| < \varepsilon$ pro libovolné $t \geq t_0$;
\item \textit{nestabilní}, jestliže není stabilní; \item \textit{nestabilní}, jestliže není stabilní;
\item \textit{lokální atraktor}, jestliže $\forall t_0 \in I$ existuje $\eta > 0$ tak, že $|x_0| < \eta$ implikuj, že $\varphi(t, t_0, x_0)$ je definováno pro všechna $t \geq t_0$ a navíc $\varphi(t, t_0, x_0) \to 0$ pro $t \to +\infty$; \item \textit{lokální atraktor}, jestliže $\forall t_0 \in I$ existuje $\eta > 0$ tak, že pro $|x_0| < \eta$ je definován výraz $\varphi(t, t_0, x_0)$ pro všechna $t \geq t_0$ a navíc $\varphi(t, t_0, x_0) \to 0$ pro $t \to +\infty$;
\item \textit{asymptoticky stabilní}, jestliže je stabilní a navíc lokální atraktor; \item \textit{asymptoticky stabilní}, jestliže je stabilní a navíc lokální atraktor;
\item \textit{uniformně stabilní}, jestliže pro všechna $\varepsilon > 0$ existuje $\delta > 0$ takové, že pro všechna $t_0 \in I$ z $|x_0| < \delta$ plyne $\varphi(t, t_0, x_0)$ je definováno a splňuje $|\varphi(t, t_0, x_0)| < \varepsilon$ pro $t \geq t_0$; \item \textit{uniformně stabilní}, jestliže pro všechna $\varepsilon > 0$ existuje $\delta > 0$ takové, že pro všechna $t_0 \in I$ z $|x_0| < \delta$ plyne, že výraz $\varphi(t, t_0, x_0)$ je definován a splňuje $|\varphi(t, t_0, x_0)| < \varepsilon$ pro $t \geq t_0$;
\item \textit{uniformě asymptoticky stabilní}, jestliže je uniformně stabilní a navíc existuje $\eta < 0$ takové, že $\forall \varepsilon > 0$ existuje $T > 0$ takové, že pro všechna $t_0 \in I$ z $|x_0| < \eta$ plyne, že $\varphi(t, t_0, x_0)$ je definováno pro všechna $t \geq t_0$ a $|\varphi(t, t_0, x_0)| \leq \varepsilon|$ pro $t \geq t_0 + T$. \item \textit{uniformě asymptoticky stabilní}, jestliže je uniformně stabilní a navíc existuje $\eta < 0$ takové, že $\forall \varepsilon > 0$ existuje $T > 0$ takové, že pro všechna $t_0 \in I$ z $|x_0| < \eta$ plyne, že $\varphi(t, t_0, x_0)$ je definováno pro všechna $t \geq t_0$ a $|\varphi(t, t_0, x_0)| \leq \varepsilon|$ pro $t \geq t_0 + T$.
\end{enumerate} \end{enumerate}
\end{definition} \end{definition}
@ -17,7 +17,7 @@ Lemma \ref{lemma-sol-dist} nám teoreticky poskytuje spojitost řešící funkce
Pojem asymptotické stability zavádíme proto, že lokální atraktor nutně nemusí implikovat stabilitu. Konstrukci takového řešení můžeme nahlédnout pomocí tzv. Vinogradovova systému. Pojem asymptotické stability zavádíme proto, že lokální atraktor nutně nemusí implikovat stabilitu. Konstrukci takového řešení můžeme nahlédnout pomocí tzv. Vinogradovova systému.
V případě autonomní rovnice splývají pojmy (asymptotické) stability a uniformní (asymptotické) stability, neboť můžeme psát $\varphi(t, t_0, x_0) = \varphi(t - t_0, 0, x_0)$. V případě autonomní rovnice splývají pojmy (asymptotické) stability a uniformní (asymptotické) stability, neboť můžeme psát $\varphi(t, t_0, x_0) = \varphi(t - t_0, 0, x_0)$.
Obecněji řešeno, řešení $\tilde x(t)$ rovnice $x' = f(x, t)$ se nazve stabilní (resp. uniformně stabilní atd.), jestliže má analogickou vlastnost nulové řešení rovnice $u' = g(u, t)$ kde $g(u, t) = f(\tilde x(t) + u, t) - f(\tilde x(t), t)$. Obecněji řečeno, řešení $\tilde x(t)$ rovnice $x' = f(x, t)$ se nazve stabilní (resp. uniformně stabilní atd.), jestliže má analogickou vlastnost nulové řešení rovnice $u' = g(u, t)$ kde $g(u, t) = f(\tilde x(t) + u, t) - f(\tilde x(t), t)$.
V případě řešení lineární rovnice \eqref{eq-linear-ode}, tj. $x' = A(t)x + g(t)$ je stabilita ekvivalentní stabilitě libovolného řešení příslušné homogenní rovnice \eqref{eq-homogenous-linear-ode}. V případě řešení lineární rovnice \eqref{eq-linear-ode}, tj. $x' = A(t)x + g(t)$ je stabilita ekvivalentní stabilitě libovolného řešení příslušné homogenní rovnice \eqref{eq-homogenous-linear-ode}.
@ -62,7 +62,7 @@ Matice $A$ splňující $\Re \lambda < 0$ pro všechna $\lambda \in \sigma(A)$ s
Jinými slovy, Jinými slovy,
$$ \|x(t)\| e^{t\alpha} \leq ce^{t_0\alpha} \|x_0\| + \int_{t_0}^t ce^{-(t-s)\alpha} \gamma \|x(s)\| ds. $$ $$ \|x(t)\| e^{t\alpha} \leq ce^{t_0\alpha} \|x_0\| + \int_{t_0}^t ce^{-(t-s)\alpha} \gamma \|x(s)\| ds. $$
Z Gronwallova lemmatu (Lemma \ref{lemma-gronwall}) dostáváme Z Gronwallova lemmatu (Lemma \ref{lemma-gronwall}) dostáváme
$$ e^{t\alpha} \| x(t) \| \leq ce^{t_0\alpha} \|x_0\| e^{c\gamma(t - t_0}. $$ $$ e^{t\alpha} \| x(t) \| \leq ce^{t_0\alpha} \|x_0\| e^{c\gamma(t - t_0)}. $$
Po opětovném přenásobení exponenciálou nakonec máme Po opětovném přenásobení exponenciálou nakonec máme
$$ \|x(t)\| \leq c \|x_0\| e^{(t - t_0)(c\gamma - \alpha)} = ce^{-\beta(t - t_0)} \| x_0 \|. $$ $$ \|x(t)\| \leq c \|x_0\| e^{(t - t_0)(c\gamma - \alpha)} = ce^{-\beta(t - t_0)} \| x_0 \|. $$
\end{proof} \end{proof}
@ -84,7 +84,7 @@ Matice $A$ splňující $\Re \lambda < 0$ pro všechna $\lambda \in \sigma(A)$ s
Použijeme seřezávací funkci Použijeme seřezávací funkci
$$\eta(t) = \begin{cases}1, t < \frac{\delta}{2};\\ $$\eta(t) = \begin{cases}1, t < \frac{\delta}{2};\\
0, t > \delta;\\ 0, t > \delta;\\
\textit{spojité prodloužení na }(\frac{\delta}{2}, \delta). \text{spojité prodloužení na }(\frac{\delta}{2}, \delta).
\end{cases}.$$ \end{cases}.$$
Dále definujeme $h(x) := \eta(\|x\|)g(x)$. Podíváme se na rovnici $x' = Ax + h(x)$. Pro $\|x\| < \frac{\delta}{2}$ platí $h(x) = g(x)$, dále pro $\|x\| > \delta$ je $h(x)$ nulová a nakonec pro $\|x\| \in [\frac{\delta}{2}, \delta]$ platí $\|h(x)\| \leq \|g(x)\|$. Tato porušená rovnice již splňuje předpoklad Lemmatu \ref{lemma-sol-eq-est}. Aplikací tohoto lemmatu dostáváme odhad na řešení této porušené rovnice. Dále definujeme $h(x) := \eta(\|x\|)g(x)$. Podíváme se na rovnici $x' = Ax + h(x)$. Pro $\|x\| < \frac{\delta}{2}$ platí $h(x) = g(x)$, dále pro $\|x\| > \delta$ je $h(x)$ nulová a nakonec pro $\|x\| \in [\frac{\delta}{2}, \delta]$ platí $\|h(x)\| \leq \|g(x)\|$. Tato porušená rovnice již splňuje předpoklad Lemmatu \ref{lemma-sol-eq-est}. Aplikací tohoto lemmatu dostáváme odhad na řešení této porušené rovnice.
$$\|x(t)\| \leq c\|x(t_0)\| e^{-\beta(t - t_0)}, \beta > 0. $$ $$\|x(t)\| \leq c\|x(t_0)\| e^{-\beta(t - t_0)}, \beta > 0. $$
@ -93,7 +93,7 @@ Matice $A$ splňující $\Re \lambda < 0$ pro všechna $\lambda \in \sigma(A)$ s
\begin{theorem}[o linearizované nestabilitě] \begin{theorem}[o linearizované nestabilitě]
\label{thm-linearized-instability} \label{thm-linearized-instability}
Je dána rovnice $x' = f(x)$. Nechť $f(x_0) = 0$ a $f(x)$ je $C^1$ na okolí $x_0$ a nechť existuje vlastní číslo $\lambda \in \sigma(A)$ takové, že $\Re\lambda > 0$, kde $A = \nabla f(x_0)$. Potom $x_0$ je (uniformně) asymptoticky stabilní. Je dána rovnice $x' = f(x)$. Nechť $f(x_0) = 0$ a $f(x)$ je $C^1$ na okolí $x_0$ a nechť existuje vlastní číslo $\lambda \in \sigma(A)$ takové, že $\Re\lambda > 0$, kde $A = \nabla f(x_0)$. Potom $x_0$ není stabilní.
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}