diff --git a/linearni-rovnice.tex b/linearni-rovnice.tex index bc4106e..540e789 100644 --- a/linearni-rovnice.tex +++ b/linearni-rovnice.tex @@ -15,7 +15,7 @@ \item $\| A + B \| \leq \|A\| + \|B\|$. \item $\| AB \| \leq \|A\|\|B\|$. \item $|Ax| \leq \|A\| |x|$ pro $x \in \mathbb{R}^n$. - \item Je-li $A$ regulární, pak $Ay \geq \frac{|y|}{\|A^{-1}\|}$ pro $y \in \mathbb{R}^n$. + \item Je-li $A$ regulární, pak $|Ay| \geq \frac{|y|}{\|A^{-1}\|}$ pro $y \in \mathbb{R}^n$. \end{enumerate} \end{theorem} @@ -83,7 +83,7 @@ Použijeme znalosti lineární algebry k tomu, abychom mohli formalizovat postup \end{theorem} \begin{proof} - Jádro lineárního zobrazení $Lx := x' - Ax$ je vektorový prostor. Dokážeme, že má dimenzi $n$. Nechť $i = 1,\dots,n$ a $x(t_0) = e_i$, pro tuto počáteční podmínku dostaneme řešení $x^i$. Potom $\{x^1, \dots, x^n\}$ tvoří bázi prostoru všech řešení. Skutečně, tyto vektory jsou lineárně nezávislé, mějme lineární kombinaci $c_1 x^1 + \dots + c_n x^n = 0$, speciálně v čase $t_0$ máme $c_1 e^1 + \dots + c_n x^n$, což implikuje, že $c_i = 0$ pro každé $i$. Navíc vezmeme libovolné řešení $z' = A(t) z$, opět zkoumejme stav v čase $t_0$. Máme $z(t_0) = d_1e^1 + \dots d_ne^n$ pro vhodná $d_1, \dots, d_n$. Definujme $y(t) := d_1 x^1(t) + \dots + d_n x^n(t)$, tedy $y$ řeší rovnici $y' = Ay$ a $y(t_0) = z(t_0)$, z čehož díky jednoznačnosti řešení dostáváme $y = z$. Nalezli jsme $n$-prvkovou bázi, tedy prostor $\mathcal{R}_H$ má dimenzi $n$. + Jádro lineárního zobrazení $Lx := x' - Ax$ je vektorový prostor. Dokážeme, že má dimenzi $n$. Nechť $i = 1,\dots,n$ a $x(t_0) = e_i$, pro tuto počáteční podmínku dostaneme řešení $x^i$. Potom $\{x^1, \dots, x^n\}$ tvoří bázi prostoru všech řešení. Skutečně, tyto vektory jsou lineárně nezávislé, mějme lineární kombinaci $c_1 x^1 + \dots + c_n x^n = 0$, speciálně v čase $t_0$ máme $c_1 e^1 + \dots + c_n e^n$, což implikuje, že $c_i = 0$ pro každé $i$. Navíc vezmeme libovolné řešení $z' = A(t) z$, opět zkoumejme stav v čase $t_0$. Máme $z(t_0) = d_1e^1 + \dots d_ne^n$ pro vhodná $d_1, \dots, d_n$. Definujme $y(t) := d_1 x^1(t) + \dots + d_n x^n(t)$, tedy $y$ řeší rovnici $y' = Ay$ a $y(t_0) = z(t_0)$, z čehož díky jednoznačnosti řešení dostáváme $y = z$. Nalezli jsme $n$-prvkovou bázi, tedy prostor $\mathcal{R}_H$ má dimenzi $n$. \end{proof} \begin{definition} diff --git a/skripta.pdf b/skripta.pdf index 5957848..ed11959 100644 Binary files a/skripta.pdf and b/skripta.pdf differ