formatovani

This commit is contained in:
Petr Velička 2025-02-27 12:21:05 +01:00
parent 1607f9a1df
commit eddafd9ef3
Signed by: petrvel
GPG key ID: E8F909AFE649174F
2 changed files with 33 additions and 28 deletions

View file

@ -28,14 +28,15 @@ Takto definované řešení je nutně spojité a má spojitou derivaci (je tří
\item $x$ je řešení (\ref{eq-ode}) splňující $x(t_0) = x_0$, \item $x$ je řešení (\ref{eq-ode}) splňující $x(t_0) = x_0$,
\item pro každé $t \in I$ platí $x(t) = x_0 + \int^t_{t_0} f(x(s), s)ds$. \item pro každé $t \in I$ platí $x(t) = x_0 + \int^t_{t_0} f(x(s), s)ds$.
\end{enumerate} \end{enumerate}
\begin{proof}
Víme, že platí $x'(s) = f(x(s), s)$ pro všechna $s \in I$, což je spojitá funkce, kterou můžeme zintegrovat na $[t_0, t]$.
Potom z Newtonova-Leibnizova vzorce máme $x(t) - x(t_0) = \int_{t_0}^t x'(s) ds = \int_{t_0}^t f(x(s), s) ds$. Tedy $x(t) = x_0 + \int_{t_0}^t f(x(s), s) ds$.
Pro důkaz opačné strany si uvědomíme, ze pro každé $t\in I$ je pravá strana diferencovatelná, tedy $x'(t) = f(x(t), t)$ a po dosazení $t = t_0$ dostáváme $x(t_0) = x_0$.
\end{proof}
\end{lemma} \end{lemma}
\begin{proof}
Víme, že platí $x'(s) = f(x(s), s)$ pro všechna $s \in I$, což je spojitá funkce, kterou můžeme zintegrovat na $[t_0, t]$.
Potom z Newtonova-Leibnizova vzorce máme $x(t) - x(t_0) = \int_{t_0}^t x'(s) ds = \int_{t_0}^t f(x(s), s) ds$. Tedy $x(t) = x_0 + \int_{t_0}^t f(x(s), s) ds$.
Pro důkaz opačné strany si uvědomíme, ze pro každé $t\in I$ je pravá strana diferencovatelná, tedy $x'(t) = f(x(t), t)$ a po dosazení $t = t_0$ dostáváme $x(t_0) = x_0$.
\end{proof}
Teď si zadefinujeme několik pojmů, které charakterizují množiny funkcí, které se chovají jistým způsobem podobně nebo stejně. Teď si zadefinujeme několik pojmů, které charakterizují množiny funkcí, které se chovají jistým způsobem podobně nebo stejně.
\begin{definition} \begin{definition}
@ -56,27 +57,31 @@ Následující věta nám říká, že na nějakém okolí libovolného bodu exi
\begin{theorem}{\textbf{(Peano)}} \begin{theorem}{\textbf{(Peano)}}
\label{thm-peano} \label{thm-peano}
Nechť $(x_0, t_0) \in \Omega$. Pak existuje $\delta > 0$ a funkce $x(t): (t_0 - \delta, t_0 + \delta) \rightarrow \mathbb{R}^n$, která je řešením (\ref{eq-ode}) a splňuje $x(t_0) = x_0$. Nechť $(x_0, t_0) \in \Omega$. Pak existuje $\delta > 0$ a funkce $x(t): (t_0 - \delta, t_0 + \delta) \rightarrow \mathbb{R}^n$, která je řešením (\ref{eq-ode}) a splňuje $x(t_0) = x_0$.
\begin{proof}
Nejdříve dokážeme pomocné tvrzení:
\begin{lemma}
Pokud $\Omega = \mathbb{R}^{n+1}$ a $f$ je omezená na $\Omega$, pak pro každé $T > 0$ existuje řešení (\ref{eq-ode}) na $(t_0 - T, t_0 + T)$ splňující $x(t_0) = x_0$.
\begin{proof}
Řešme ``porušenou" úlohu $(P_\lambda)$: $x(t) = x_0 + \int_{t_0}^t f(x(s - \lambda), s) ds$ pro $ t > t_0$ a $x(t) = x_0$ pro $t \in [t_0 - \lambda, t_0]$.
Na $I_1 := (t_0, t_0 + \lambda]$ definujeme $x(t) = x_0 + \int_{t_0}^t f(x(s - \lambda, s) ds$.
Na $I_2 := (t_0 + \lambda, t_0 + 2\lambda]$ definujeme $x(t)$ obdobně a indukcí pokračujeme až do nekonečna.
Tímto je ``porušená" úloha vyřešena na $[t_0-\lambda, t_0 + T]$.
Položme $\lambda = \frac{1}{n}$ pro $n = 1,2,\dots$. Pišme dále jen $x_n$ namísto $x_{1/n}$, tedy máme posloupnost funkcí.
Ukážeme, že jsou stejně spojité a stejně omezené.
Stejná omezenost plyne z toho, že $\| x_n (t) \| = \| x_0 + \int_{t_0}^t f(x(s - \frac{1}{n}), s) ds \| \leq \| x_0 \| + \int_{t_0}^t f(x(s - \frac{1}{n}) \| ds$. Ale funkce $f$ je omezená, tedy máme $\| x_n(t) \| \leq \| x_0 \| + (T - t_0) \cdot K$, kde $K$ je příslušná konstanta omezenosti $f$.
Stejnou spojitost máme z odhadu $\| x_n(t) - x_n(r) \| = \| \int_r^t f(x(s - \frac{1}{n}), s) ds \| \leq |t - r| \cdot K$. V poslední nerovnosti jsme odhadli integrál součinem délky intervalu a konstantou omezenosti funkce $f$. Stačí položit $\delta = \frac{\varepsilon}{K}$, potom $\|x_n(t) - x_r(t)\| < \delta K = \varepsilon$.
Tedy dle Věty \ref{thm-arzela} můžeme z posloupnosti $x_n$ vybrat stejnoměrně konvergentní podposloupnost. Zbývá dokázat, že její limita řeší naši rovnici.
\hfill \textit{konec 1. přednášky (21.2.2025)}
\end{proof}
\end{lemma}
\end{proof}
\end{theorem} \end{theorem}
K důkazu této věty budeme potřebovat pomocné lemma:
\begin{lemma}
Pokud $\Omega = \mathbb{R}^{n+1}$ a $f$ je omezená na $\Omega$, pak pro každé $T > 0$ existuje řešení (\ref{eq-ode}) na $(t_0 - T, t_0 + T)$ splňující $x(t_0) = x_0$.
\end{lemma}
\begin{proof}
Řešme ``porušenou" úlohu: $x(t) = x_0 + \int_{t_0}^t f(x(s - \lambda), s) ds$ pro $ t > t_0$ a $x(t) = x_0$ pro $t \in [t_0 - \lambda, t_0]$.
Na $I_1 := (t_0, t_0 + \lambda]$ definujeme $x(t) = x_0 + \int_{t_0}^t f(x(s - \lambda, s) ds$.
Na $I_2 := (t_0 + \lambda, t_0 + 2\lambda]$ definujeme $x(t)$ obdobně a indukcí pokračujeme dokud $t_0 + k\lambda$ nebude větší než $T$.
Tímto je ``porušená" úloha vyřešena na $[t_0-\lambda, t_0 + T]$.
Položme $\lambda = \frac{1}{n}$ pro $n = 1,2,\dots$. Pišme dále jen $x_n$ namísto $x_{1/n}$, tedy máme posloupnost funkcí.
Ukážeme, že jsou stejně spojité a stejně omezené.
Stejná omezenost plyne z toho, že $\| x_n (t) \| = \| x_0 + \int_{t_0}^t f(x(s - \frac{1}{n}), s) ds \| \leq \| x_0 \| + \int_{t_0}^t f(x(s - \frac{1}{n}) \| ds$. Ale funkce $f$ je omezená, tedy máme $\| x_n(t) \| \leq \| x_0 \| + (T - t_0) \cdot K$, kde $K$ je příslušná konstanta omezenosti $f$.
Stejnou spojitost máme z odhadu $\| x_n(t) - x_n(r) \| = \| \int_r^t f(x(s - \frac{1}{n}), s) ds \| \leq |t - r| \cdot K$. V poslední nerovnosti jsme odhadli integrál součinem délky intervalu a konstantou omezenosti funkce $f$. Stačí položit $\delta = \frac{\varepsilon}{K}$, potom $\|x_n(t) - x_r(t)\| < \delta K = \varepsilon$.
Tedy dle Věty \ref{thm-arzela} můžeme z posloupnosti $x_n$ vybrat stejnoměrně konvergentní podposloupnost. Zbývá dokázat, že její limita řeší naši rovnici.
\hfill \textit{konec 1. přednášky (21.2.2025)}
\end{proof}
% \begin{proof}[Důkaz Věty \ref{thm-peano}]
% \end{proof}

Binary file not shown.