\section{Stabilita} Lemma \ref{lemma-sol-dist} nám teoreticky poskytuje spojitost řešící funkce v proměnné $x_0$, pro větší $t$ však kvůli exponenciálnímu růstu nemá význam. Budeme proto zkoumat okolnosti, za nichž existují odhady, které se nezhoršují pro $t \in \infty$. \begin{definition} Nechť $f = f(x, t)$ je spojitá v otevřené $\Omega \in \R^{n+1}$ a navíc lokálně lipschitzovská vůči $x$. Nechť $\Omega \supset \{0\} \times I$ kde $I = (\tau, \infty)$ a nechť $f(0, t) = 0$ pro všechna $t \in I$. Řekneme, že nulové řešení rovnice $x' = f(t, x)$ \eqref{eq-ode} je \begin{enumerate}[(i)] \item \textit{stabilní}, jestliže pro všechna $t_0 \in I$ a $\varepsilon > 0$ existuje $\delta > 0$ takové, že $|x_0| < \delta$ implikuje, že $\varphi(t, t_0, x_0)$ je definováno a splňuje $|\varphi(t, t_0, x_0)| < \varepsilon$ pro $t \geq t_0$; \item \textit{nestabilní}, jestliže není stabilní; \item \textit{lokální atraktor}, jestliže $\forall t_0 \in I$ existuje $\eta > 0$ tak, že $|x_0| < \eta$ implikuj, že $\varphi(t, t_0, x_0)$ je definováno pro všechna $t \geq t_0$ a navíc $\varphi(t, t_0, x_0) \to 0$ pro $t \to +\infty$; \item \textit{asymptoticky stabilní}, jestliže je stabilní a navíc lokální atraktor; \item \textit{uniformně stabilní}, jestliže pro všechna $\varepsilon > 0$ existuje $\delta > 0$ takové, že pro všechna $t_0 \in I$ z $|x_0| < \delta$ plyne $\varphi(t, t_0, x_0)$ je definováno a splňuje $|\varphi(t, t_0, x_0)| < \varepsilon$ pro $t \geq t_0$; \item \textit{uniformě asymptoticky stabilní}, jestliže je uniformně stabilní a navíc existuje $\eta < 0$ takové, že $\forall \varepsilon > 0$ existuje $T > 0$ takové, že pro všechna $t_0 \in I$ z $|x_0| < \eta$ plyne, že $\varphi(t, t_0, x_0)$ je definováno pro všechna $t \geq t_0$ a $|\varphi(t, t_0, x_0)| \leq \varepsilon|$ pro $t \geq t_0 + T$. \end{enumerate} \end{definition} Pojem asymptotické stability zavádíme proto, že lokální atraktor nutně nemusí implikovat stabilitu. Konstrukci takového řešení můžeme nahlédnout pomocí tzv. Vinogradovova systému. V případě autonomní rovnice splývají pojmy (asymptotické) stability a uniformní (asymptotické) stability, neboť můžeme psát $\varphi(t, t_0, x_0) = \varphi(t - t_0, 0, x_0)$. Obecněji řešeno, řešení $\tilde x(t)$ rovnice $x' = f(x, t)$ se nazve stabilní (resp. uniformně stabilní atd.), jestliže má analogickou vlastnost nulové řešení rovnice $u' = g(u, t)$ kde $g(u, t) = f(\tilde x(t) + u, t) - f(\tilde x(t), t)$. V případě řešení lineární rovnice \eqref{eq-linear-ode}, tj. $x' = A(t)x + g(t)$ je stabilita libovolného řešení příslušné homogenní rovnice \eqref{eq-homogenous-linear-ode}. \begin{theorem} Je dána rovnice $x' = A(t) x$, kde $A(t)$ je spojitá v $I = (\tau, \infty)$. Nechť $\Phi(t)$ je (libovolná) fundamentální matice. Potom nulové řešení je \begin{enumerate} \item stabilní, právě když pro $\forall t_0 \in I$ je $\|\Phi(t)\|$ omezená v $[t_0, \infty)$; \item asymptoticky stabilní, právě když $\|\Phi(t)\| \to 0$ pro $t \to \infty$; \item uniformně stabilní, právě když existuje $c > 0$ takové, že pro všechna $s < t \in I$ je $\|\Phi(t)\Phi^{-1}(s)\| \leq c$. \item uniformně asymptoticky stabilní, právě když existují kladná $\alpha$ a $c$ taková, že pro všechna $s < t \in I$ je $\|\Phi(t)\Phi^{-1}(s)\| \leq ce^{-\alpha(t-s)}$. \end{enumerate} \end{theorem} \begin{theorem} Nechť $A$ je konstantní matice. Potom nulové řešení rovnice $x' = Ax$ je \begin{enumerate} \item (uniformně) stabilní, právě když $\Re \lambda \leq 0$ pro všechna vlastní čísla $\lambda \in \sigma(A)$, přičemž $\Re \lambda = 0$ pouze pro polojednoduchá vlastní čísla (tedy příslušné Jordanovy buňky mají velikost 1). \item (uniformě) asymptoticky stabilní, právě když $\Re \lambda \leq 0$ pro všechna vlastní čísla $\lambda \in \sigma(A)$. \end{enumerate} \end{theorem} \begin{proof} Plyne ihned z tvaru maticové exponenciály. \end{proof} Matice $A$ splňující $\Re \lambda < 0$ pro všechna $\lambda \in \sigma(A)$ se nazývá \textit{Hurwitzowská}. \begin{lemma} Je dána rovnice $x' = Ax + r(x, t)$. Nechť existují kladná $\alpha, c$ tak, že $\|e^{tA}\| \leq ce^{-t\alpha}$ pro $t \geq 0$. Nechť dále $r(x, t): \R^{n+1} \to \R^n$ je spojitá a $|r(x, t)| \leq \gamma |x|$ pro všechna $x, y$ kde $\gamma < \frac{\alpha}{c}$. Pak každé řešení splňuje $$ |x(t)| \leq c|x(t_0)| \exp(-\beta(t - t_0)) $$ pro $t \geq t_0$, kde $\beta = \alpha - c\gamma > 0$. \end{lemma} \begin{proof} Nechť $x$ řeší $x' = Ax + r(x, t)$ na $(0, +\infty)$. Pak $x$ řeší $x' = Ax + g(t)$, kde $g(t) := r(x(t), t)$. Z variace konstant (Důsledek \ref{thm-variation-hom-const}) dostáváme, že $$ x(t) = e^{(t - t_0)A} x_0 + \int_{t_0}^t e^{(t-s)A} g(s) ds. $$ Pro $t > t_0$ dostaneme $$ \|x(t)\| \leq ce^{-(t-t_0)\alpha} \|x_0\| + \int_{t_0}^t ce^{-(t-s)\alpha} \gamma \|x(s)\| ds. $$ Jinými slovy, $$ \|x(t)\| e^{t\alpha} \leq ce^{t_0\alpha} \|x_0\| + \int_{t_0}^t ce^{-(t-s)\alpha} \gamma \|x(s)\| ds. $$ Z Gronwallova lemmatu (Lemma \ref{lemma-gronwall}) dostáváme $$ e^{t\alpha} \| x(t) \| \leq ce^{t_0\alpha} \|x_0\| e^{c\gamma(t - t_0}. $$ Po opětovném přenásobení exponenciálou nakonec máme $$ \|x(t)\| \leq c \|x_0\| e^{(t - t_0)(c\gamma - \alpha)} = ce^{-\beta(t - t_0)} \| x_0 \|. $$ \end{proof} \hfill \textit{konec 8. přednášky (11.4.2025)}