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1 Question 1

1.1 Part A
Linear 1st-order PDE is the equation

Z az 8x1 f(x)

which we consider for x € 2 C R". By its solution we mean a continuously
differentiable function u(z) such that the previous equation holds pointwise for
all z € Q.

Characteristic system for this equation is a system of ODEs 9t (¢) = a;(x(t))
fori=1,...,N and z € Q.

Theorem 1.1 (characterization of solutions of 1st order linear PDE). Function
Y(x1,...,xN) s a solution for a linear homogeneous PDE if and only if it is
constant along each of the solutions of the characteristic system.

Proof. =: Let 1 be such that Zf\il ai(x)%g) =0. Let {p1(t),...,on(t)} be
one of its characteristics. Then

Do) 2

N
G0 (0) = 3 e

Zaxz @1(t), - on(t))ai(ei(t), - on(t)) =0.

<: Let 1 be constant along every characteristic. Choose £ € 2. Since
{a;}}¥, are continuous, at least one characteristic goes through the point ¢ which
corresponds to some interval (¢1,ts). Fix such characteristic (¢1(¢),...,on(t))
and a point 7 such that (©1(7),...,on (7)) = (&1,...,&N).

Since ¥ (p1(t), ..., pn(t)) is constant on (t1,t2), we have that

0="L(e1(0),...on(0) me PL(D)... - on )aslpa(t). ..o (D).

Now it is sufficient to choose t = 7 and we get that 1 is a solution at point &.
Since this point was chosen arbitrarily, we conclude that it is a solution on the
entire Q. O

1.2 Part B

Fundamental solution of the Poisson equation is the function

-1 N =2;
£(x) ;:{ 27 log |o], IV = 2:

(]\/‘%QK/le|N_2a N 2 37

where kp is the measure of the n-dimensional unit ball.



Theorem 1.2 (Three Potentials Theorem). Let w C RN be a bounded region
with at least Lipschitz boundary, u € C*(Q) and € is the fundamental solution
of the Poisson equation. Then for all x € €,

ue) == [ e —wdutiy+ [ (€T -t 5= 1)dsw),

Q

where
2L (y) = Vulyn(y), o(x ) = V,E( — y)n(y)

Y
and n is the outer normal to 6.

Proof. Let x € Q and let B.(z) C Q. Let V. := Q\ B.(z). Using Green’s
theorem, we obtain

ou
[, e vauman= [ a8 vy [ e mas)-

[ o)t = st
6Ve Y

Denote the individual integrals I; = I 4+ Is — I, and send € to zero.
First we can write (the functions in question are “nice” enough)

I — /Qf(x —y)Au(y)dy

I5 is obviously zero (fundamental solution).
I3 we can rewrite in the following manner:

Ju du
L= [ fe—vgwase) - [ e@-ngwise -
£~ 1) e (1)dS(y).
50 n

For the last integral, we can write

o€ o0&
L= [ g nise) [ g pas) -

[ 1) = )ast) + (o)
19] Y

From this follows the equality in question. O



2 Question 2
2.1 Part A

Functions u(T1,. .., Tn), u2(z1, ..., N),un(z1,...,zN) are dependent on the
set O (O is open and bounded), if there exists a continuously differentiable
function F'(uq,...,u,) such that

1. F is not identically zero on any region G C R™.
2. for all z = (z1,...,zy) € O we have that F(ui(z),...,u,(x)) = 0.

Theorem 2.1 (Jacobi’s criterion for function dependence). Let @ C RN be
open, u; € CH(Q) fori=1,...,N. Then ui(z),...,u,(z) are dependent in
if and only if

Ouq (x) . Ouq (x)
oz or N
Ju(z) = det : : =0.
Oun(z) . Oun (x)
oz or N

Theorem 2.2 (Dependence of N solutions). Let v1,...,%n be solutions of
a non-trivial linear homogeneous 1st-order PDE in Q C RN . Then they are
dependent in 2.

Proof. Assume that ,...,1¥y are not dependent in 2. Then there exists a
point zg € Q such that Jy(zo) # 0. From continuity of solutions we have that
the determinant in question is non-zero on some neighborhood U(zg). This

Auq (x) Auq ()
6111 U (')wN
implies that the system : : y = 0 only has a trivial solu-
dun(z) Bun(z)
oz ox N
tion, which is in contradiction Wlth the assumption that our original PDE was
non-trivial. O

2.2 Part B

Consider the following problem: a%é()tt,;c;s) 22 ”éiy ) = 0, v(s, ;) = 0 and
of (t,x;s
( f(a’t ))t = f(t,z).

Then u(t, z) fo v(t,xz;s) ds solves general wave equation with RHS f.
For N =1 we have o(t,x;s) = o= [, o (@) f(s,y)dy and thus

z+c(t—s) 1 T4cT
u(t, dyds = — t— dydr.
) 26//900(” f(s,y)dyds 26/O/I_wf( 7,y)dydr

(s,9) .
27rc ch(t o (@ \/m ly— w‘zdl/- Thus

21¢ By (@) /2t —5)? — |y —x|?

For N = 2 we have v(t,z;s) =




3 Question 3

3.1 Part A
Linear 1st-order PDE is the equation

" ou

a;(x x) = f(x

Y- ai@) g (@) = fla)
=1

which we consider for x € 2 C R". By its solution we mean a continuously
differentiable function u(z) such that the previous equation holds pointwise for
all z € Q.

Functions w1 (z1,..., %), u2(21,. .., TN), un(21,...,2n) are dependent on
the set O (O is open and bounded), if there exists a continuously differentiable
function F'(ug,...,u,) such that

1. F is not identically zero on any region G C R”.
2. for all z = (z1,...,zy5) € O we have that F(ui(z),...,u,(x)) = 0.

Let 91,...,%¥n_1 are solutions of the 1st-order PDE. For every subregion
Q' C Q let there be a point xy € ' such that the matrix

O . O
oz, ox N
OYn—1 . OYn-_1
oz oxr N

has rank N — 1. Then 1,%¥xy_1 make the fundamental system of the linear
PDE.

Theorem 3.1 (Maximum Number of Independent Solutions). Let there exist
a point x € Q' for every subregion ' C 0 such that Y |a;(x)] > 0. Let
P1,...,n_1 be the fundamental system of said PDE. Then 6 € C1(Q) solves
the PDE iff ¥n,...,¥N_1,0 are dependent in 2.

Proof. =—> was already proven before <= : We assume that .J 7.6

= 0.
Therefore the system 1 8’1"1 4ty Tt ¢N L+ yn 8— =0fort=1,...,N
has a non-trivial solution for every = € ). Multlplymg this equation by a;(x)
and summing all of the together gives us

%
SE)SUCE LMD SE 2
Since 1; solve the equation, we get that

Z ai(@ 81’1




Assume that 6 does not solve are equation. Therefore we have an xg such that
Zil ai(xo)% # 0. By the usual notion of continuity we get that there

exists a neighb%rhood of x¢ where this formula is non-zero. Therefore yy = 0
on some U(xg). Therefore yl% +-Fyn—1 6%1;_’1 = 0. Since all the original
functions are independent, there is a point x; where the system only has a
trivial solution and we get that J3 (1) # 0, which contradicts our assumption

of independence. O

3.2 Part B

Consider the following system: —Awu = f on some €, u = g on 6. If Q is
bounded, we talk about the inner Dirichlet problem, if R™ \ Q is bounded, we
talk about the outer Dirichlet problem (in this case we only care about functions
u(z) =0 (Ir\%) for |x| — oo.

For the uniqueness of the solution for the inner problem, we only need to
prove that the zero problem for f = g = 0 only has the trivial solution u =
0, which in fact follows from the weak maximum principle (0 = mingqu =
ming v < maxg v = maxgsg u = 0).

Now we shall prove the uniqueness for the outer problem. Assume that u;
and uy are two solutions. Then u; — us =: w solves Aw = 0 on 2, w = 0 on the
boundary and, w(z) = O (lwlﬁ)

First assume that N > 3, therefore w(z) — 0 as |z| goes to infinity. Let
zg € 2 and € > 0 be given. Then there exists R > 0 such that z¢,G C Bp,
where G := RV \ Q and |w| < & on §Br. Now apply the maximum principle for
the set Qi := QU Bgr. We have that w < ¢ on 2. The same can be said for
—w, which means that we are done.

Let now N = 2. WLOG let the origin be in G := R \ Q. Fix an open ball
Bgr C G. Define a mapping F : RV \ {0} — RY \ {0} defined as F(z) = 2’ :=

’l’ﬁj . This means that z and F(z) lie on the same half-line originating in the

origin. Then F maps Q to some region Q* C Bpg, in fact, F(Q) = Q*\{0}. Define
w'(2') = w(F~1(2")) = w(z). Obviously w’ = 0 on 6Q2*. We will show that w’ is
harmonic on Q*\ {0}. Set r = |z| ad p = |2’|. Then set w(r, ¢) = w(x1,z2) and
@' (p,¢") = w'(x],z}) and moving to the polar coordinates we get the desired
equality. Now the function is obviously bounded, therefore we can extend it
harmonically. By what was already proven for the inner problem, this means
that w’ = 0, which in turn implies that w = 0 on Q.




4 Question 4
4.1 Part A

Functions u(T1,. .., Tn), u2(z1, ..., N),un(z1,...,zN) are dependent on the
set O (O is open and bounded), if there exists a continuously differentiable
function F'(uq,...,u,) such that

1. F is not identically zero on any region G C R".
2. for all z = (z1,...,zy) € O we have that F(ui(z),...,us(x)) = 0.

Let ¢1,...,9¥n_1 are solutions of the 1st-order PDE. For every subregion
Q' C Q let there be a point xg € Q' such that the matrix

OYn . 01
oz ox N
OYn_1 . OYn-_1
oz ox N

has rank N — 1. Then 7,19 x_1 make the fundamental system of the linear
PDE.

Theorem 4.1. Let m < N — 1, 9; are C* fori=1,...,m and solve the ODE

such that D@ o)
1y--+5%m
m(xla“wxm) # 0.
Let &; = ps(x),i < m and &; = x; otherwise. Let Q@ = #(Q) and
gli(i'l, . ,.i‘]\l) = ai(:vl(:%), . 7.%‘71(,%))
Now let Yupy1,-..,¥N—1 be solutions of the equation
N
0y
| Z ai(av)aiZ =0
i1=m+1

Then functions 1, .., Un_1 (bp(x) = p(Z(x))) make up the fundamental
system of the PDE.

Proof. First let’s show that the functions v solve the equation.

O o= Oy 0F; o Oy O
0z ZJ: 0%, 0z; | ZJ: 0%, 0z,
Multiplying this equation by a;(z) and summing them up across all is, we get
At _ = W (F()) §~ 0% () Yo
Sale)ge =2 G S T e + Y a0

It remains to prove that the set is indeed the fundamental system. This
however comes from rewriting the determinant in question using the chain rule
as two determinants of the non-trivial solutions given in the statement. O



4.2 Part B
We are given the equation % —c?Au = f (on (0,T] x Q), u(0,2) = g(x),
% = h(z) and

o Dirichlet: u(t,z) = w(t,x) on the boundary (0,T7] x 0§2);

o Neumann: % = (Vu - i)(t,x) = w(t,z) on the same boundary.

For  “behaved” enough (C%! or C* boundary for D. and N. respectively),
the solution u € C? is determined uniquely (if exists).

Proof. Let u; and us be two such solutions. Then w := u; = uy solves the
following problem:

0? 0
U 2Ay = 0,u(0,z) = au

ot2 gt (%2 =0

and u =0 (2% = 0) on (0, 7] x 69.

% =
Now fix Ty € (0,T). For every ¢t € (0,7p) multiply the PDE by %—1‘ and
integrate:

Pu 5, Ou 0%u du 9 ou
0= /Q(— — c*Au)—dx f/gzwadxfc /QAuadQ:.

Using differentiation under the integral sign and Green’s identities, we get

1d ou\> 1,d
e — ) dz+ == 2dx = 0.
2 dt Q<at> T e dt/QW“' v

Integrating over (0,7p), we get

1 8u(T0,x) 2 1 2 2 -

From this (both integrals must be zero) we get that % = 0 and also v = 0 on
the entire region §2. O
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