oprava preklepu
This commit is contained in:
parent
b89d66edb5
commit
16d7d47a53
2 changed files with 2 additions and 2 deletions
|
@ -133,12 +133,12 @@ Vidíme, že hustota odpovídá skokům distribuční funkce v daném bodě. V n
|
|||
|
||||
\begin{enumerate}[(i)]
|
||||
\item $F_X(a)= P[X \leq a]$. Bez újmy na obecnosti nechť $b > a$. Potom $F_X(b) = P[X \leq b] = P([X \leq a] \cup [a < X \leq b]) = P[X \leq a] + P[a < X \leq b]$ z aditivity míry, druhý sčítanec je nezáporný, tedy dostáváme požadované tvrzení.
|
||||
\item Platí $\lim_{a\rightarrow -\infty} = \lim_{n\rightarrow\infty} F_X(-n) = \lim_{n\rightarrow\infty} P[X \in (-\infty, -n]] =: $\\$\lim_{n\rightarrow\infty} P[X \in A_n] = 0$. Poslední rovnost platí ze spojitosti míry (v prázdné množině), neboť platí $A_n \swarrow \emptyset$. Obdobně se ukáže tvrzení pro $a \rightarrow + \infty$ (cvičení).
|
||||
\item Platí $\lim_{a\rightarrow -\infty} = \lim_{n\rightarrow\infty} F_X(-n) = \lim_{n\rightarrow\infty} P[X \in (-\infty, -n]] =: $\\$\lim_{n\rightarrow\infty} P[X \in A_n] = 0$. Poslední rovnost platí ze spojitosti míry (v prázdné množině), neboť platí $A_n \searrow \emptyset$. Obdobně se ukáže tvrzení pro $a \rightarrow + \infty$ (cvičení).
|
||||
\item Stačí uvažovat postoupnost $a_n = a + \frac{1}{n}$ pro $n \in \mathbb{N}$. Požadované tvrzení opět plyne z věty o spojitosti míry.
|
||||
\end{enumerate}
|
||||
\end{proof}
|
||||
|
||||
Pro každou funkci $F$ splňující vlastnosti z předchozí věty existuje míra $\mu_F$ na $(\mathbb{R}, \mathcal{B})$ určená vztahem $\mu_F((-\infty, a]) = F(a)$ pro všechna $a$. Tato míra je konečná a platí $\mu_F((a, b]) = F(b) - F(b)$.
|
||||
Pro každou funkci $F$ splňující vlastnosti z předchozí věty existuje míra $\mu_F$ na $(\mathbb{R}, \mathcal{B})$ určená vztahem $\mu_F((-\infty, a]) = F(a)$ pro všechna $a$. Tato míra je konečná a platí $\mu_F((a, b]) = F(b) - F(a)$.
|
||||
|
||||
\begin{definition}{\textbf{(Rozklad pravděpodobnostního rozdělení)}}
|
||||
Každou pravděpodobnostní míru $P_X$ můžeme rozdělit na tři složky $P_X = P_{X_{as}} + P_{X_{ds}} + P_{X_{sg}}$, kde $P_{X_{as}}$ je absolutně spojitá vůči Lebesgueově míře $\lambda$, $P_{X_{ds}}$ (diskrétní spojitá) je absolutně spojitá vůči čítací míře $\mu$ na nějaké spočetné podmnožině $\mathbb{R}$ a nakonec $P_{X_{sg}}$ (singulární) není absolutně spojitá vůči $\lambda$ ani ji nelze napsat jako spočetnou kombinaci Diracových měr $\delta_x$.
|
||||
|
|
BIN
skripta.pdf
BIN
skripta.pdf
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue