diff --git a/nahodne-jevy.tex b/nahodne-jevy.tex index c1a9bb9..5109ee8 100644 --- a/nahodne-jevy.tex +++ b/nahodne-jevy.tex @@ -12,11 +12,12 @@ Pro ilustraci uvedeme následující motivační příklad, kde podrobně popí Házíme dvakrát férovou mincí. Naším výběrovým prostorem bude množina $\Omega = \{PP, PO, OP, OO\}$. Událost, že první hod je panna, je tedy $A = \{PP, PO\}$. V tomto zápise písmeno $P$ odpovídá tomu, že padla panna, kdežto písmeno $O$ odpovídá orlu. Dále uvažujme jevy $H_1$ -- při prvním hodu padne panna, a $H_2$ -- při druhém hodu padne panna. Nechť jsou všechny výsledky stejně pravděpodobné (jinými slovy, mince je férová), potom pravděpodobnost, že padne alespoň jedna panna (tj. nastane jev $H_1 \cup H_2$) je $\frac{3}{4}$. - \begin{proof} - Zřejmě z předchozího máme $H_1 = \{PP, PO\}$ a $H_2 = \{OP, PP\}$. Pravděpodobnost spočteme jako podíl velikosti $|H_1 \cup H_2| = 3$ a velikosti celého prostoru $|\Omega| = 4$. - \end{proof} \end{example} +\begin{proof} + Zřejmě z předchozího máme $H_1 = \{PP, PO\}$ a $H_2 = \{OP, PP\}$. Pravděpodobnost spočteme jako podíl velikosti $|H_1 \cup H_2| = 3$ a velikosti celého prostoru $|\Omega| = 4$. +\end{proof} + Tato jednoduchá intuice však selže v případě nekonečné (nespočetné) množiny $\Omega$, neboť jak již čtenář jistě ví z přednášky základů teorie míry, na nespočetné množině neexistuje ``rozumný" způsob, jak měřit množiny. Musíme proto pracovat pouze s jistou třídou podmnožin $\Omega$, které budeme říkat $\sigma$-algebra. \begin{definition} @@ -53,33 +54,36 @@ Přímo z této definice již můžeme odvodit pár základních vlastností pra \item Pro $A \in \mathcal{A}$ platí $P(A^C) = 1 - P(A)$, \item Pro $A, B \in \mathcal{A}, A \subset B$ platí $P(A) \leq P(B)$. \end{enumerate} - \begin{proof} - \begin{enumerate} - \item Uvažujme posloupnost $A_1 = \Omega, A_2 = A_3 = \dots = \emptyset$. Potom z vlastnosti (ii) z definice máme, že $P(\Omega) = P(\Omega \cup \emptyset \cup \emptyset \dots) = P(\Omega) + \sum_{n=2}^\infty P(\emptyset)$. Tedy $\sum_{n=2}^\infty P(\emptyset) = 0$, což může nastat pouze v případě $P(\emptyset) = 0$ (jde o součet nekonečně mnoha nezáporných čísel). - \item Nechť $A_1 = A, A_2 = B, A_i = \emptyset$ pro $i > 2$. Tvrzení plyne přímo z vlastnosti (ii) z definice pravděpodobnostní míry a již dokázané vlastnosti 1. - \item $1 = P(\Omega) = P(A \cup A^C) = P(A) + P(A^C)$. Tato rovnost platí, neboť množina je vždy disjunktní se svým komplementem. - \item $P(B) = P(A \cup B\setminus A) = P(A) + P(B\setminus A)$. Jelikož funkce $P$ je nezáporná, snadno vidíme, že $P(B) \geq P(A)$. - \end{enumerate} - \end{proof} \end{observation} +\begin{proof} + \begin{enumerate} + \item Uvažujme posloupnost $A_1 = \Omega, A_2 = A_3 = \dots = \emptyset$. Potom z vlastnosti (ii) z definice máme, že $P(\Omega) = P(\Omega \cup \emptyset \cup \emptyset \dots) = P(\Omega) + \sum_{n=2}^\infty P(\emptyset)$. Tedy $\sum_{n=2}^\infty P(\emptyset) = 0$, což může nastat pouze v případě $P(\emptyset) = 0$ (jde o součet nekonečně mnoha nezáporných čísel). + \item Nechť $A_1 = A, A_2 = B, A_i = \emptyset$ pro $i > 2$. Tvrzení plyne přímo z vlastnosti (ii) z definice pravděpodobnostní míry a již dokázané vlastnosti 1. + \item $1 = P(\Omega) = P(A \cup A^C) = P(A) + P(A^C)$. Tato rovnost platí, neboť množina je vždy disjunktní se svým komplementem. + \item $P(B) = P(A \cup B\setminus A) = P(A) + P(B\setminus A)$. Jelikož funkce $P$ je nezáporná, snadno vidíme, že $P(B) \geq P(A)$. + \end{enumerate} +\end{proof} + \begin{lemma}{\textbf{(Pravděpodobnost sjednocení)}} Pro libovolné $A, B \in \mathcal{A}$ platí $P(A \cup B) = P(A) + P(B) - P(A\cap B)$. - \begin{proof} - Rozepíšeme $A \cup B = (A \cap B^C) \cup (A \cap B) \cup (A^C \cap B)$. Tyto tři množiny jsou zřejmě po dvou disjunktní. Dále díky aditivitě pravděpodobnosti máme $P(A \cup B) = P(A\cap B^C) + P(A \cap B) + P(A^C\cap B) + P(A \cap B) - P(A \cap B) = P(A) + P(B) - P(A \cap B)$. - \end{proof} \end{lemma} +\begin{proof} + Rozepíšeme $A \cup B = (A \cap B^C) \cup (A \cap B) \cup (A^C \cap B)$. Tyto tři množiny jsou zřejmě po dvou disjunktní. Dále díky aditivitě pravděpodobnosti máme $P(A \cup B) = P(A\cap B^C) + P(A \cap B) + P(A^C\cap B) + P(A \cap B) - P(A \cap B) = P(A) + P(B) - P(A \cap B)$. +\end{proof} + \begin{theorem}{\textbf{(Spojitost pravděpodobnosti)}} Buď $A_n \uparrow A$ nebo $A_n \downarrow A$ pro $A_n, A \in \mathcal{A}$. Potom platí $P(A_n) \rightarrow P(A)$. - \begin{proof} - Nechť $A_n \uparrow A$. Potom z definice $A_1 \subset A_2 \dots$ a platí $A = \bigcup_{i=1}^\infty A_i$. - Definujme posloupnost $B_n$: $B_1 = A_1, B_n = A_n\setminus A_{n-1}$. Potom $B_i$ jsou po dvou disjunktní a platí $A_n = \bigcup_{i=1}^{n}B_i$. Zřejmě také platí $A \equiv \bigcup_{n=1}^\infty A_n = \bigcup_{n=1}^\infty B_n$. Pak $P(A_n) = P(\bigcup_{i=1}^n B_i) = \sum_{i=1}^n P(B_i)$. Z toho již můžeme odvodit $\lim_{n\rightarrow\infty} P(A_n) = \lim_{n\rightarrow\infty} \sum_{i=1}^n P(B_i) = \sum_{i=1}^\infty P(B_i) = P(\bigcup_{i=1}^{\infty} B_i) = P(A)$. - - Případ klesající $A_n$ se dokáže analogicky, stačí uvažovat $C_n = A_n^C$. - \end{proof} \end{theorem} +\begin{proof} + Nechť $A_n \uparrow A$. Potom z definice $A_1 \subset A_2 \dots$ a platí $A = \bigcup_{i=1}^\infty A_i$. + Definujme posloupnost $B_n$: $B_1 = A_1, B_n = A_n\setminus A_{n-1}$. Potom $B_i$ jsou po dvou disjunktní a platí $A_n = \bigcup_{i=1}^{n}B_i$. Zřejmě také platí $A \equiv \bigcup_{n=1}^\infty A_n = \bigcup_{n=1}^\infty B_n$. Pak $P(A_n) = P(\bigcup_{i=1}^n B_i) = \sum_{i=1}^n P(B_i)$. Z toho již můžeme odvodit $\lim_{n\rightarrow\infty} P(A_n) = \lim_{n\rightarrow\infty} \sum_{i=1}^n P(B_i) = \sum_{i=1}^\infty P(B_i) = P(\bigcup_{i=1}^{\infty} B_i) = P(A)$. + + Případ klesající $A_n$ se dokáže analogicky, stačí uvažovat $C_n = A_n^C$. +\end{proof} + \hfill \textit{konec 1. přednášky (17.2.2025)} \newpage Uvedeme si ještě jeden příklad ilustrující intuitivní chápání pravděpodobnosti a zavedeme první takzvané pravděpodobnostní rozdělení. Uvažujme případ, že prostor $\Omega$ je konečný. Nechť všechny výsledky jsou stejně pravděpodobné, pak platí @@ -101,11 +105,12 @@ Je důležité si uvědomit, že disjunktní události s kladnou pravděpodobnos \begin{example} Házíme férovou mincí 10krát. Nechť $A$ je událost ``padla aspoň jedna panna". Pak platí $P(A) = 1 - (1/2)^{10}$. - \begin{proof} - Nechť $T_j$ je událost, že při $j$-tém hodu padne orel. Můžeme psát $P(A) = 1 - P(A^C) = 1 - P(\text{samé orly}) = 1 - P(T_1 \cap \dots \cap T_{10})$. Dále díky nezávislosti (v tomto případě jde o nezávislost předpokládanou) jevů $T_j$ máme $1 - P(T_1 \cap \dots \cap T_{10}) = 1 - P(T_1)\cdots P(T_{10}) = 1 - (1/2)^{10} \approx 0.999$. - \end{proof} \end{example} +\begin{proof} + Nechť $T_j$ je událost, že při $j$-tém hodu padne orel. Můžeme psát $P(A) = 1 - P(A^C) = 1 - P(\text{samé orly}) = 1 - P(T_1 \cap \dots \cap T_{10})$. Dále díky nezávislosti (v tomto případě jde o nezávislost předpokládanou) jevů $T_j$ máme $1 - P(T_1 \cap \dots \cap T_{10}) = 1 - P(T_1)\cdots P(T_{10}) = 1 - (1/2)^{10} \approx 0.999$. +\end{proof} + Dalším silným nástrojem v teorii pravděpodobnosti je podmíněná pravděpodobnost, která nám poskytuje odpověď na otázku ``Pokud vím, že nastala událost $B$, jaká je pravděpodobnost události $A$?". \begin{definition} @@ -121,16 +126,17 @@ Poznamenejme si několik základních vlastností podmíněné pravděpodobnosti \item Události $A$ a $B$ jsou nezávislé právě tehdy, když $P(A|B) = P(A)$ (předpokládáme nenulovost $P(B)$). \item $P(A\cap B) = P(A|B)P(B) = P(B|A)P(A)$ v případě, že $P(A)P(B) > 0$. \end{enumerate} - \begin{proof} - Vlastnosti (iii) a (iv) plynou přímo z definice vynásobením vhodnou konstantou. - - Vlastnost (ii) se dokáže následujícím protipříkladem, uvažujme hod dvěma férovými mincemi. Nechť $H_1$ je událost ``padla aspoň jedna panna" a $H_2$ událost ``padly dvě panny". Potom $P(H_1|H_2) = 1$ ale $P(H_2|H_1) = \frac{1}{3}$. Důkaz obecného vztahu je ponechán čtenáři jako snadné (ale užitečné) cvičení. - - Nakonec, vlastnost (i) je důsledkem toho, že pro libovolnou množinu $A \in \mathcal{A}$ je $A \cap B$ měřitelná, a navíc pro libovolný systém po dvou disjunktních množin $A_i, i \in \mathbb{N}$ platí $P(\bigcup_{i=1}^\infty A_i | B) = \frac{1}{P(B)} P\left(\left(\bigcup_{i=1}^\infty A_i\right) \cap B\right) = $\\ - $\frac{1}{P(B)} P\left(\bigcup_{i=1}^\infty (A_i \cap B)\right) = \frac{1}{P(B)} \sum_{i=1}^\infty P(A_i \cap B) = \sum_{i=1}^\infty P(A_i|B)$. - \end{proof} \end{observation} +\begin{proof} + Vlastnosti (iii) a (iv) plynou přímo z definice vynásobením vhodnou konstantou. + + Vlastnost (ii) se dokáže následujícím protipříkladem, uvažujme hod dvěma férovými mincemi. Nechť $H_1$ je událost ``padla aspoň jedna panna" a $H_2$ událost ``padly dvě panny". Potom $P(H_1|H_2) = 1$ ale $P(H_2|H_1) = \frac{1}{3}$. Důkaz obecného vztahu je ponechán čtenáři jako snadné (ale užitečné) cvičení. + + Nakonec, vlastnost (i) je důsledkem toho, že pro libovolnou množinu $A \in \mathcal{A}$ je $A \cap B$ měřitelná, a navíc pro libovolný systém po dvou disjunktních množin $A_i, i \in \mathbb{N}$ platí $P(\bigcup_{i=1}^\infty A_i | B) = \frac{1}{P(B)} P\left(\left(\bigcup_{i=1}^\infty A_i\right) \cap B\right) = $\\ + $\frac{1}{P(B)} P\left(\bigcup_{i=1}^\infty (A_i \cap B)\right) = \frac{1}{P(B)} \sum_{i=1}^\infty P(A_i \cap B) = \sum_{i=1}^\infty P(A_i|B)$. +\end{proof} + Použití podmíněné pravděpodobnosti v praxi však někdy může vést k neintuitivním výsledkům, které ilustruje následující příklad. \begin{example} @@ -162,22 +168,24 @@ Na závěr uvedeme dvě velmi užitečné věty, které se často používají v \label{thm-complete-probability} Nechť $A_1, A_2, \dots$ je spočetný disjunktní rozklad $\Omega$ takový, že $P(A_i) > 0$ pro každé $i \in \mathbb{N}$. Potom pro libovolnou událost $B \in \mathcal{A}$ platí: $$P(B) = \sum_{i=1}^\infty P(B|A_i) P(A_i).$$ - \begin{proof} - Definujme posloupnost množin $C_i = B \cap A_i$ pro $i\in \mathbb{N}$. Zjevně $\{C_i, i \in \mathbb{N}\}$ je disjunktní pokrytí $B$. Potom $P(B) = \sum_{i=1}^\infty P(C_i) = \sum_{i=1}^\infty P(B \cap A_i) = \sum_{i=1}^\infty P(B|A_i)P(A_i)$. - \end{proof} \end{theorem} +\begin{proof} + Definujme posloupnost množin $C_i = B \cap A_i$ pro $i\in \mathbb{N}$. Zjevně $\{C_i, i \in \mathbb{N}\}$ je disjunktní pokrytí $B$. Potom $P(B) = \sum_{i=1}^\infty P(C_i) = \sum_{i=1}^\infty P(B \cap A_i) = \sum_{i=1}^\infty P(B|A_i)P(A_i)$. +\end{proof} + \begin{theorem}{\textbf{(Bayes)}} \label{thm-bayes} Nechť $A_1, A_2, \dots$ je spočetný disjunktní rozklad $\Omega$ takový, že $P(A_i) > 0$ pro každé $i \in \mathbb{N}$. Mějme událost $B \in \mathcal{A}$ s nenulovou pravděpodobností. Potom platí: $$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^\infty P(B|A_j)P(A_j)}.$$ - \begin{proof} - Přímým výpočtem dostáváme - $$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^\infty P(B|A_j) P(A_j)},$$ - kde poslední rovnost získáme aplikací \textit{Věty \ref{thm-complete-probability}}. - \end{proof} \end{theorem} +\begin{proof} + Přímým výpočtem dostáváme + $$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^\infty P(B|A_j) P(A_j)},$$ + kde poslední rovnost získáme aplikací \textit{Věty \ref{thm-complete-probability}}. +\end{proof} + Použití Bayesovy věty si ukážeme na následujícím příkladu. \begin{example} @@ -192,9 +200,10 @@ Použití Bayesovy věty si ukážeme na následujícím příkladu. \begin{theorem}{\textbf{(O postupném podmiňování)}} Nechť $\{A_i\}_{i=1}^n$ jsou náhodné jevy takové, že $P(\bigcap_{i=1}^n) > 0$. Pak platí $$ P(\bigcap_{i=1}^n A_i ) = P(A_n | \bigcap_{i=1}^{n-1}) \cdot P(A_2|A_1) \cdot P(A_1). $$ - \begin{proof} - Dokazujeme indukcí podle počtu náhodných jevů. Z definice podmíněné pravděpodobnosti víme, že $P(A_2 \cap A_1) = P(A_2 | A_1) P(A_1)$. Dále - $$P\left(\bigcap_{i=1}^n\right) = P\left(A_n \cap \left(\bigcap_{i=1}^{n-1} A_i\right)\right) = P\left(A_n | \bigcap_{i=1}^{n-1}\right) P\left(\bigcap_{i=1}^{n-1}\right),$$ - čímž je důkaz ukončen. - \end{proof} \end{theorem} + +\begin{proof} + Dokazujeme indukcí podle počtu náhodných jevů. Z definice podmíněné pravděpodobnosti víme, že $P(A_2 \cap A_1) = P(A_2 | A_1) P(A_1)$. Dále + $$P\left(\bigcap_{i=1}^n\right) = P\left(A_n \cap \left(\bigcap_{i=1}^{n-1} A_i\right)\right) = P\left(A_n | \bigcap_{i=1}^{n-1}\right) P\left(\bigcap_{i=1}^{n-1}\right),$$ + čímž je důkaz ukončen. +\end{proof} diff --git a/nahodne-veliciny.tex b/nahodne-veliciny.tex index eeb4b6f..6145235 100644 --- a/nahodne-veliciny.tex +++ b/nahodne-veliciny.tex @@ -30,27 +30,27 @@ Máme tedy jakýsi obraz míry $P$ v zobrazení $P_X$ čímž se $(\Omega, \math Buď $g$ měřitelná funkce na měřitelném prostoru $(\mathbb{M}, \mathcal{M})$ a $X: (\Omega, \mathcal{A}, P) \rightarrow (\mathbb{M}, \mathcal{M})$. Nechť $P_X$ je míra na $\mathcal{M}$ indukovaná zobrazením $X$, tedy $P_X(M) = P[X^{-1}(M)]$ pro $M \in \mathcal{M}$. Potom, je-li aspoň jedna strana definována, platí $$\int_\Omega g[X(\omega)] dP(\omega) = \int_\mathbb{M} g(x) dP_X(x).$$ - - \begin{proof} - Důkaz této věty je poměrně technický, hlavní ideou je ``klasický" postup z teorie míry postupným důkazem nejdříve pro charakteristickou funkci, poté pro jednoduchou měřitelnou (nabývající jen konečně mnoha hodnot), pak pro nezápornou měřitelnou a na závěr pro obecnou měřitelnou funkci. - - Nechť $g = \chi_B, B \in \mathcal{M}$. Tedy $g(X(\omega)) = 1$ pro $X(\omega) \in B$ (a všude jinde nulová), tedy pro $\omega \in X^{-1}(B)$. Potom máme - $$ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]. $$ - Pro pravou stranu máme - $$ \int_\mathbb{M} g(x) dP_X(x) = \int_B dP_X(x) = P_X(B) = P[X^{-1}(B)].$$ - - Dále nechť $g$ je jednoduchá měřitelná, tedy $g(\cdot) = \sum_{k = 1}^{n} c_k \chi_{B_k}(\cdot)$ pro $n \in \mathbb{N}$, $c_k \in \mathbb{R}$ a $B_k \in \mathcal{M}$ pro všechna $k$. - Z linearity integrálu plyne (vytkneme sumu) $ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]$. - - Je-li $g$ nezáporná měřitelná, potom existuje posloupnost $g_n$ jednoduchých měřitelných funkcí takových, že $g_n \nearrow g$. Potom dle Léviho věty o monotonní konvergenci máme - $$\int_\Omega g[X(\omega)] dP(\omega) = \lim_{n\rightarrow\infty} \int_\Omega g_n[X(\omega)] dP(\omega) $$ - $$ = \lim_{n\rightarrow\infty} \int_\mathbb{M} g_n(x) dP_X(x) = \int_\mathbb{M} g(x) dP_X(x),$$ - kde třetí rovnost plyne z již dokázané části pro jednoduché měřitelné funkce. - - Nakonec, pro $g$ měřitelnou existuje rozklad $g = g^+ - g^-$ takový, že $g^+, g^-$ jsou nezáporné měřitelné, tedy požadované tvrzení plyne z části pro nezáporné měřitelné funkce. - \end{proof} \end{theorem} +\begin{proof} + Důkaz této věty je poměrně technický, hlavní ideou je ``klasický" postup z teorie míry postupným důkazem nejdříve pro charakteristickou funkci, poté pro jednoduchou měřitelnou (nabývající jen konečně mnoha hodnot), pak pro nezápornou měřitelnou a na závěr pro obecnou měřitelnou funkci. + + Nechť $g = \chi_B, B \in \mathcal{M}$. Tedy $g(X(\omega)) = 1$ pro $X(\omega) \in B$ (a všude jinde nulová), tedy pro $\omega \in X^{-1}(B)$. Potom máme + $$ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]. $$ + Pro pravou stranu máme + $$ \int_\mathbb{M} g(x) dP_X(x) = \int_B dP_X(x) = P_X(B) = P[X^{-1}(B)].$$ + + Dále nechť $g$ je jednoduchá měřitelná, tedy $g(\cdot) = \sum_{k = 1}^{n} c_k \chi_{B_k}(\cdot)$ pro $n \in \mathbb{N}$, $c_k \in \mathbb{R}$ a $B_k \in \mathcal{M}$ pro všechna $k$. + Z linearity integrálu plyne (vytkneme sumu) $ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]$. + + Je-li $g$ nezáporná měřitelná, potom existuje posloupnost $g_n$ jednoduchých měřitelných funkcí takových, že $g_n \nearrow g$. Potom dle Léviho věty o monotonní konvergenci máme + $$\int_\Omega g[X(\omega)] dP(\omega) = \lim_{n\rightarrow\infty} \int_\Omega g_n[X(\omega)] dP(\omega) $$ + $$ = \lim_{n\rightarrow\infty} \int_\mathbb{M} g_n(x) dP_X(x) = \int_\mathbb{M} g(x) dP_X(x),$$ + kde třetí rovnost plyne z již dokázané části pro jednoduché měřitelné funkce. + + Nakonec, pro $g$ měřitelnou existuje rozklad $g = g^+ - g^-$ takový, že $g^+, g^-$ jsou nezáporné měřitelné, tedy požadované tvrzení plyne z části pro nezáporné měřitelné funkce. +\end{proof} + Na závěr poznamenejme, že se nám budou obzvlášť hodit volby $(\mathbb{M}, \mathcal{M}) = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ pro $n \geq 1$. Připomeňme si, že jsou-li $\mu, \nu$ dvě $\sigma$-konečné míry na $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a je-li $\nu << \mu$ (tedy $\mu(B) = 0$ implikuje $\nu(B) = 0$), potom z Radonovy-Nikodymovy věty plyne existence nezáporné měřitelné funkce $f$ takové, že $\nu(B) = \int_\mathbb{R} fd\mu$ pro všechna $B \in \mathcal{B}$. Této funkci $f$ říkáme Radonova-Nikodymova derivace a píšeme $f = \frac{d\nu}{d\mu}$. Taková funkce $f$ je navíc určena jednoznačně až na množinu $\mu$-míry $0$. @@ -70,11 +70,12 @@ Je třeba si dát pozor na to, aby zvolená referenční míra opravdu byla abso \begin{theorem} Buď $X$ náhodná veličina a $P_X$ její rozdělení. Je-li $f_X$ hustota (rozdělení) vůči $\sigma$-konečné míře $\mu$, pak $$P[X\in B] = \int_B f_X d\mu.$$ - \begin{proof} - Přímý důsledek Radonovy-Nikodymovy věty a vztahu mezi $P_X$ a $P$. - \end{proof} \end{theorem} +\begin{proof} + Jde o přímý důsledek Radonovy-Nikodymovy věty a vztahu mezi $P_X$ a $P$. +\end{proof} + Další funkcí, která plně charakterizuje rozdělení náhodné veličiny je tzv. distribuční funkce. \begin{definition} @@ -125,17 +126,18 @@ Vidíme, že hustota odpovídá skokům distribuční funkce v daném bodě. V n \end{enumerate} Navíc, každá funkce $F$ splňující body (i)-(iii) z této věty je distribuční funkcí nějaké náhodné veličiny. - \begin{proof} - Dokážeme pouze implikaci o vlastnostech distribuční funkce, opačná implikace (existuje rozdělení) vyžaduje pokročilý matematický aparát z analýzy a teorie míry, který prozatím postrádáme. - - \begin{enumerate}[(i)] - \item $F_X(a)= P[X \leq a]$. Bez újmy na obecnosti nechť $b > a$. Potom $F_X(b) = P[X \leq b] = P([X \leq a] \cup [a < X \leq b]) = P[X \leq a] + P[a < X \leq b]$ z aditivity míry, druhý sčítanec je nezáporný, tedy dostáváme požadované tvrzení. - \item Platí $\lim_{a\rightarrow -\infty} = \lim_{n\rightarrow\infty} F_X(-n) = \lim_{n\rightarrow\infty} P[X \in (-\infty, -n]] =: $\\$\lim_{n\rightarrow\infty} P[X \in A_n] = 0$. Poslední rovnost platí ze spojitosti míry (v prázdné množině), neboť platí $A_n \swarrow \emptyset$. Obdobně se ukáže tvrzení pro $a \rightarrow + \infty$ (cvičení). - \item Stačí uvažovat postoupnost $a_n = a + \frac{1}{n}$ pro $n \in \mathbb{N}$. Požadované tvrzení opět plyne z věty o spojitosti míry. - \end{enumerate} - \end{proof} \end{theorem} +\begin{proof} + Dokážeme pouze implikaci o vlastnostech distribuční funkce, opačná implikace (existuje rozdělení) vyžaduje pokročilý matematický aparát z analýzy a teorie míry, který prozatím postrádáme. + + \begin{enumerate}[(i)] + \item $F_X(a)= P[X \leq a]$. Bez újmy na obecnosti nechť $b > a$. Potom $F_X(b) = P[X \leq b] = P([X \leq a] \cup [a < X \leq b]) = P[X \leq a] + P[a < X \leq b]$ z aditivity míry, druhý sčítanec je nezáporný, tedy dostáváme požadované tvrzení. + \item Platí $\lim_{a\rightarrow -\infty} = \lim_{n\rightarrow\infty} F_X(-n) = \lim_{n\rightarrow\infty} P[X \in (-\infty, -n]] =: $\\$\lim_{n\rightarrow\infty} P[X \in A_n] = 0$. Poslední rovnost platí ze spojitosti míry (v prázdné množině), neboť platí $A_n \swarrow \emptyset$. Obdobně se ukáže tvrzení pro $a \rightarrow + \infty$ (cvičení). + \item Stačí uvažovat postoupnost $a_n = a + \frac{1}{n}$ pro $n \in \mathbb{N}$. Požadované tvrzení opět plyne z věty o spojitosti míry. + \end{enumerate} +\end{proof} + Pro každou funkci $F$ splňující vlastnosti z předchozí věty existuje míra $\mu_F$ na $(\mathbb{R}, \mathcal{B})$ určená vztahem $\mu_F((-\infty, a]) = F(a)$ pro všechna $a$. Tato míra je konečná a platí $\mu_F((a, b]) = F(b) - F(b)$. \begin{definition}{\textbf{(Rozklad pravděpodobnostního rozdělení)}} @@ -170,12 +172,13 @@ Ne každá veličina, se kterou se běžně setkáme je ryze spojitá nebo ryze \item $P[X = a] = F_X(a) - F_X(a^-)$, kde $F_X(a^-)$ je limita zleva $\lim_{h\rightarrow 0^+} F_X(a - h)$ a odtud $P[a \leq X \leq b] = F_X(b) - F_X(a^-)$. \item pro spojitou náhodnou veličinu platí $P[a\leq X \leq b] = P[a \leq X < b] = F_X(b) - F_X(a)$. \end{enumerate} - \begin{proof} - Důkaz je jednoduchý, plyne z příslušných definic. Uvedeme např. důkaz pro bod (iii). - - $P[X = a] = \lim_{h\rightarrow 0^+} P[a - h < X \leq a] = F_X(a) - \lim_{h\rightarrow 0^+} F_X(a - h)$. - \end{proof} \end{lemma} +\begin{proof} + Důkaz je jednoduchý, plyne z příslušných definic. Uvedeme např. důkaz pro bod (iii). + + $P[X = a] = \lim_{h\rightarrow 0^+} P[a - h < X \leq a] = F_X(a) - \lim_{h\rightarrow 0^+} F_X(a - h)$. +\end{proof} + \hfill \textit{konec 4. přednášky (25.2.2025)} diff --git a/skripta.pdf b/skripta.pdf index 1c795e5..6b342cf 100644 Binary files a/skripta.pdf and b/skripta.pdf differ