diff --git a/nahodne-veliciny.tex b/nahodne-veliciny.tex index efa6191..eeb4b6f 100644 --- a/nahodne-veliciny.tex +++ b/nahodne-veliciny.tex @@ -148,7 +148,7 @@ Příkladem singulární distribuční funkce je například integrál takzvané Náhodnou veličinu $X$ nazveme \textit{diskrétní}, jestliže existují $\emptyset \neq I \subset \mathbb{N}$, $\{x_i\}_{i \in I}$ a $\{p_i \in (0,1]\}_{i \in I}$ takové že $P[X \in B] = \sum_{i, x_i \in B} p_i$ pro všechny borelovské $B$. \end{definition} -Platí $P[X = x_i] = p_i$ a $\sum_{i \in I} p_i = 1$. Rozdělením takové veličiny je funkce $P_X = \sum_{i \in I} p_i \delta_{x_i}$, kde $\delta_u$ je Diracova míra v bodě $u$. Toto rozdělení je spojité vůči čítací míře na $S = \{x_i\}_{i \in I} \subset \mathbb{R}$. Potom funkce +Platí $P[X = x_i] = p_i$ a $\sum_{i \in I} p_i = 1$. Rozdělením takové veličiny je funkce $P_X = \sum_{i \in I} p_i \delta_{x_i}$, kde $\delta_u$ je Diracova míra v bodě $u$. Toto rozdělení je absolutně spojité vůči čítací míře na $S = \{x_i\}_{i \in I} \subset \mathbb{R}$. Potom funkce $f_X(u) := \begin{cases} p_i, u = x_i,\\ 0, \text{jinak} @@ -158,7 +158,7 @@ $f_X(u) := \begin{cases} Náhodná veličina $X$ se nazývá \textit{(absolutně) spojitá}, pokud její rozdělení $P_X$ je absolutně spojité vůči Lebesgueově míře $\lambda$. \end{definition} -Pro spojitou náhodnou veličinu $X$ vždy existuje hustota $f_X$ (nezáporná a jednoznačná až na množinu $\lambda$-míry $0$) splňující $P[X\in B] = \int_B f_X(t) dt$ a speciálně $F_X(a) = \int_{-\infty}^a f_X(t) dt$ pro všechna $a \in \mathbb{R}$. Taková $F_X$ má derivaci ve skoro všech bodech a platí $F'_X(a) = f_X(a)$ pro s.v. $a$. Analogicky pro diskrétní náhodnou veličinu $Y$ je hustota funkcí, která nabývá v bodě $a$ hodnotu distribuční funkce v daném bodě. +Pro spojitou náhodnou veličinu $X$ vždy existuje hustota $f_X$ (nezáporná a jednoznačná až na množinu $\lambda$-míry $0$) splňující $P[X\in B] = \int_B f_X(t) dt$ a speciálně $F_X(a) = \int_{-\infty}^a f_X(t) dt$ pro všechna $a \in \mathbb{R}$. Taková $F_X$ má derivaci ve skoro všech bodech a platí $F'_X(a) = f_X(a)$ pro s.v. $a$. Analogicky pro diskrétní náhodnou veličinu $Y$ je hustota funkcí, která nabývá v bodě $a$ hodnoty distribuční funkce v daném bodě. Ne každá veličina, se kterou se běžně setkáme je ryze spojitá nebo ryze diskrétní. Příkladem veličiny, která má obě složky nenulové, je například úhrn denních srážek, s nenulovou pravděpodobností nenaprší vůbec, ale když už začne pršet, úhrn srážek je spojitá náhodná veličina. diff --git a/skripta.pdf b/skripta.pdf index 7b6662b..1c795e5 100644 Binary files a/skripta.pdf and b/skripta.pdf differ