\section{Náhodné veličiny} V této kapitole se budeme věnovat náhodným veličinám, což bude formalizovat (a zobecňovat) jakýsi intuitivní chápání toho, že nějaká proměnná nabývá různých hodnot s určitými pravděpodobnostmi. Začneme ústřední definicí celé statistiky -- náhodnou veličinou. \begin{definition} Nechť $(\Omega, \mathcal{A})$ je měřitelný prostor. \textit{Náhodná veličina} je měřitelné zobrazení, které přiřazuje každému výsledku $\omega$ reálné číslo $X(\omega)$. Jinými slovy, $\{\omega \in \Omega: X(\omega) \leq x\} \in \mathcal{A} \forall x\in\mathbb{R}$. \end{definition} \hfill \textit{konec 2. přednášky (18.2.2025)} \begin{convention} Zavedeme značení $[X \in B] = \{\omega: X(\omega) \in B\}, [X \leq a] = \{\omega, X(\omega) \leq a\}$. Platí tedy $[X \in B], [X \leq a] \in \mathcal{A}$ pro všechna $B \in \mathcal{B}, a \in \mathbb{R}$. Jde o náhodné jevy a jsou tedy dobře definované jejich pravděpodobnosti $P[X \in B], P[X \leq a]$. \end{convention} \begin{example} Házíme mincí desetkrát. Nechť $X(\omega)$ je počet orlů v posloupnosti $\omega$. Jestliže $\omega = OOPOOPOOPP$ (kde $O$ je orel a $P$ je panna), platí $X(\omega) = 6$. \end{example} V předchozí kapitole jsme mluvili o pravděpodobnostním rozdělení, je na čase tento pojem formálně zadefinovat. \begin{definition} \textit{Rozdělením náhodné veličiny} $X: (\Omega, \mathcal{A}) \rightarrow (\mathbb{R}, \mathcal{B}(\mathbb{R}))$ nazýváme indukovanou pravděpodobnostní míru $P_X$ na $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ definovanou jako $$ P_X(B) := P[\{\omega\in\Omega: X(\omega)\in B\}],B\in \mathcal{B}(\mathbb{R}).$$ \end{definition} Máme tedy jakýsi obraz míry $P$ v zobrazení $P_X$ čímž se $(\Omega, \mathcal{A}, P)$ zobrazí na pravděpodobnostní prostor $(\mathbb{R},\mathcal{B}(\mathbb{R}),P_X)$. V opačném směru můžeme použít takzvané kanonické vnoření do prostoru $(\mathbb{R}, \mathcal{B}, P_X)$, kde naší zvolenou měřitelnou funkcí bude identita, tedy není potřeba se bát, že by příslušný prostor nemusel existovat. Následující věta říká, že nezáleží ve kterém z těchto dvou prostorů integrujeme libovolnou funkci. \begin{theorem}{\textbf{(O přenosu integrace)}} Buď $g$ měřitelná funkce na měřitelném prostoru $(\mathbb{M}, \mathcal{M})$ a $X: (\Omega, \mathcal{A}, P) \rightarrow (\mathbb{M}, \mathcal{M})$. Nechť $P_X$ je míra na $\mathcal{M}$ indukovaná zobrazením $X$, tedy $P_X(M) = P[X^{-1}(M)]$ pro $M \in \mathcal{M}$. Potom, je-li aspoň jedna strana definována, platí $$\int_\Omega g[X(\omega)] dP(\omega) = \int_\mathbb{M} g(x) dP_X(x).$$ \begin{proof} Důkaz této věty je poměrně technický, hlavní ideou je ``klasický" postup z teorie míry postupným důkazem nejdříve pro charakteristickou funkci, poté pro jednoduchou měřitelnou (nabývající jen konečně mnoha hodnot), pak pro nezápornou měřitelnou a na závěr pro obecnou měřitelnou funkci. Nechť $g = \chi_B, B \in \mathcal{M}$. Tedy $g(X(\omega) = 1$ pro $X(\omega) \in B$ (a všude jinde nulová), tedy pro $\omega \in X^{-1}(B)$. Potom máme $$ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]. $$ Pro pravou stranu máme $$ \int_\mathbb{M} g(x) dP_X(x) = \int_B dP_X(x) = P_X(B) = P[X^{-1}(B)].$$ Dále nechť $g$ je jednoduchá měřitelná, tedy $g(\cdot) = \sum_{k = 1}^{n} c_k \chi_{B_k}(\cdot)$ pro $n \in \mathbb{N}$, $c_k \in \mathbb{R}$ a $B_k \in \mathcal{M}$ pro všechna $k$. Z linearity integrálu plyne (vytkneme sumu) $ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]$. Je-li $g$ nezáporná měřitelná, potom existuje posloupnost $g_n$ jednoduchých měřitelných funkcí takových, že $g_n \nearrow g$. Potom dle Léviho věty o monotonní konvergenci máme $$\int_\Omega g[X(\omega)] dP(\omega) = \lim_{n\rightarrow\infty} \int_\Omega g_n[X(\omega)] dP(\omega) $$ $$ = \lim_{n\rightarrow\infty} \int_\mathbb{M} g_n(x) dP_X(x) = \int_\mathbb{M} g(x) dP_X(x),$$ kde třetí rovnost plyne z již dokázané části pro jednoduché měřitelné funkce. Nakonec, pro $g$ měřitelnou existuje rozklad $g = g^+ - g^-$ takový, že $g^+, g^-$ jsou nezáporné měřitelné, tedy požadované tvrzení plyne z části pro nezáporné měřitelné funkce. \end{proof} \end{theorem} Na závěr poznamenejme, že se nám budou obzvlášť hodit volby $(\mathbb{M}, \mathcal{M}) = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ pro $n \geq 1$. Připomeňme si, že jsou-li $\mu, \nu$ dvě $\sigma$-konečné míry na $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a je-li $\nu << \mu$ (tedy $\mu(B) = 0$ implikuje $\nu(B) = 0$), potom z Radonovy-Nikodymovy věty plyne existence nezáporné měřitelné funkce $f$ takové, že $\nu(B) = \int_\mathbb{R} fd\mu$ pro všechna $B \in \mathcal{B}$. Této funkci $f$ říkáme Radonova-Nikodymova derivace a píšeme $f = \frac{d\nu}{d\mu}$. Taková funkce $f$ je navíc určena jednoznačně až na množinu $\mu$-míry $0$. Využijeme těchto poznatků tak, že zvolíme vhodnou referenční míru na $\mathbb{R}$ a rozdělení $P_X$ pak bude popsáno právě zavedenou Radonovou-Nikodymovou derivací. Vhodné referenční míry jsou např. \begin{itemize} \item Lebesgueova míra $\lambda$, \item Čítací míra na spočetné podmnožině $\mathbb{R}$, platí $\mu_S(B) = |B \cap S|$ kde $S$ je nejvýše spočetná podmnožina $\mathbb{R}$. \end{itemize} \begin{definition} Buď $X$ náhodná veličina a $P_X$ její rozdělení. Nechť $P_X$ je absolutně spojité vůči $\mu$, kde $\mu$ je $\sigma$-konečná míra na $\mathbb{R}$. Pak funkci $f_X$ splňující $P_X(B) = \int_B f_X d\mu$ pro všechny $B \in \mathbb{B}$ nazveme \textit{hustotou} rozdělení náhodné veličiny $X$ vůči míře $\mu$. \end{definition} Je třeba si dát pozor na to, aby zvolená referenční míra opravdu byla absolutně spojitá, například při hodu kostkou má výsledek $1$ nenulovou pravděpodobnost, ale $\lambda(\{1\}) = 0$. \begin{theorem} Buď $X$ náhodná veličina a $P_X$ její rozdělení. Je-li $f_X$ hustota (rozdělení) vůči $\sigma$-konečné míře $\mu$, pak $$P[X\in B] = \int_B f_X d\mu.$$ \begin{proof} Přímý důsledek Radonovy-Nikodymovy věty a vztahu mezi $P_X$ a $P$. \end{proof} \end{theorem} Další funkcí, která plně charakterizuje rozdělení náhodné veličiny je tzv. distribuční funkce. \begin{definition} Buď $X$ náhodná veličina na $(\Omega, \mathcal{A}, P)$ a $P_X$ její rozdělení. \textit{Distribuční funkce} $F_x$ náhodné veličiny $X$ je definována $F_X(a) = P((-\infty, a]) = P[X \leq a]$. \end{definition} Uvedeme si několik užitečných vlastností distribučních funkcí: \begin{corollary} \begin{enumerate}{(i)} \item Distribuční funkce jednoznačně určuje rozdělení. \item Různé náhodné veličiny mohou mít stejné distribuční funkce, tedy stejné rozdělení. \end{enumerate} \end{corollary} \hfill \textit{konec 3. přednášky (23.2.2025)}