proofreading

This commit is contained in:
Petr Velycko 2025-05-17 06:31:51 +02:00
parent 43283469d5
commit 0d844cb232
Signed by: petrvel
GPG key ID: E8F909AFE649174F
3 changed files with 14 additions and 5 deletions

View file

@ -14,9 +14,9 @@ V této kapitole se budeme věnovat otázce rozšíření řešení na co nejvě
\begin{proof}
Mějme řešení $(x, I)$ takové, že $I = (a, b)$. Budeme induktivně prodlužovat za bod $b$ (na druhou stranu se to pak udělá analogicky). Položme $x_0 = x$, $b_0 = b$, $I_0 = I$. V $n$-tém kroku dostaneme řešení $(x_n, I_n)$, kde $I_n = (a, b_n)$. Dále definujeme $\omega_n = \sup \{z > b_n; (x_n, I_n) \text{ lze prodloužit na } (a, z) \}$. Pokud příslušná množina je prázdná, jsme hotovi, neboť řešení již nejde prodloužit, tedy je maximální.
V opačném případě můžeme definovat $b_{n + 1} = \frac{b_n + \omega_n}{2}$ (pokud $\omega_n < \infty$), případně $b_{n + 1} = b_n + 1$. Tímto postupem získáme rostoucí posloupnost $b_n$, která musí mít limitu. Označme tuto limitu $\beta$. Dále položme $\tilde{I} = (a, \beta)$, $\tilde{x} = x_n(t)$, pro všechna $t \in \tilde{I}$ zvolím $n$ tak, aby $t \in I_n$. Na volbě $n$ nezávisí, neboť na příslušných intervalech jsou funkce $x_n$ stejné.
V opačném případě můžeme definovat $b_{n + 1} = \frac{b_n + \omega_n}{2}$ (pokud $\omega_n < \infty$), případně $b_{n + 1} = b_n + 1$. Tímto postupem získáme rostoucí posloupnost $b_n$, která musí mít limitu. Označme tuto limitu $\beta$. Dále položme $\tilde{I} = (a, \beta)$, $\tilde{x} = x_n(t)$, pro všechna $t \in \tilde{I}$ zvolím $n$ tak, aby $t \in I_n$. Na volbě $n$ nezáleží, neboť na příslušných intervalech jsou funkce $x_n$ stejné.
Dokážeme, že takto definované řešení $(\tilde{x}, \tilde{I})$ je maximální. Pro spor budeme předpokládat, že existuje rozšíření na $(a, \hat{\beta})$ takové, že $\hat{\beta}$. Okamžitě vidíme, že $\beta < \infty$. Vezmeme $n$ takové, aby $\beta - b_n < \hat{\beta} - \beta$ a $\beta - b_n < 1$ (existuje díky tomu, že $b_n$ konvergují k $\beta$). V tom případě $(x_n, I_n)$ má prodloužení až do $\hat{\beta}$, tedy $\omega_n \geq \hat{\beta}$. Pak ale (pokud $\omega_n = \infty$) $b_{n + 1} = b_n + 1 > \beta$, máme spor, případně pro $\omega_n$ konečné máme $b_{n + 1} = \frac{b_n + \omega_n}{2} > \frac{2\beta - \hat{\beta} + \hat{\beta}}{2} = \beta$, opět jsme došli ke sporu.
Dokážeme, že takto definované řešení $(\tilde{x}, \tilde{I})$ je maximální. Pro spor budeme předpokládat, že existuje rozšíření na $(a, \hat{\beta})$ takové, že $\hat{\beta} > \beta$. Okamžitě vidíme, že $\beta < \infty$. Vezmeme $n$ takové, aby $\beta - b_n < \hat{\beta} - \beta$ a $\beta - b_n < 1$ (existuje díky tomu, že $b_n$ konvergují k $\beta$). V tom případě $(x_n, I_n)$ má prodloužení až do $\hat{\beta}$, tedy $\omega_n \geq \hat{\beta}$. Pak ale (pokud $\omega_n = \infty$) $b_{n + 1} = b_n + 1 > \beta$, máme spor, případně pro $\omega_n$ konečné máme $b_{n + 1} = \frac{b_n + \omega_n}{2} > \frac{2\beta - \hat{\beta} + \hat{\beta}}{2} = \beta$, opět jsme došli ke sporu.
\end{proof}
V případě $f$ lipschitzovské se důkaz dá výrazně zjednodušit. Budeme uvažovat všechna prodloužení řešení $x$ (platí jednoznačnost), dostaneme lineárně uspořádanou množinu, potom díky Zornovu lemmatu existuje maximální prvek.