preklep ve formatovani
This commit is contained in:
parent
9d840e169e
commit
44ca3bb236
1 changed files with 1 additions and 0 deletions
|
@ -72,6 +72,7 @@ Následující věta nám řiká, že na nějakém okolí libovolného bodu exis
|
||||||
Stejnou spojitost máme z odhadu $\| x_n(t) - x_n(r) \| = \| \int_r^t f(x(s - \frac{1}{n}), s) ds \| \leq |t - r| \cdot K$. V poslední nerovnosti jsme odhadli integrál součinem délky intervalu a konstantou omezenosti funkce $f$. Stačí položit $\delta = \frac{\varepsilon}{K}$, potom $\|x_n(t) - x_r(t)\| < \delta K = \epsilon$.
|
Stejnou spojitost máme z odhadu $\| x_n(t) - x_n(r) \| = \| \int_r^t f(x(s - \frac{1}{n}), s) ds \| \leq |t - r| \cdot K$. V poslední nerovnosti jsme odhadli integrál součinem délky intervalu a konstantou omezenosti funkce $f$. Stačí položit $\delta = \frac{\varepsilon}{K}$, potom $\|x_n(t) - x_r(t)\| < \delta K = \epsilon$.
|
||||||
|
|
||||||
Tedy dle Věty \ref{thm-arzela} můžeme z posloupnosti $x_n$ vybrat stejnoměrně konvergentní podposloupnost. Zbývá dokázat, že její limita řeší naši rovnici.
|
Tedy dle Věty \ref{thm-arzela} můžeme z posloupnosti $x_n$ vybrat stejnoměrně konvergentní podposloupnost. Zbývá dokázat, že její limita řeší naši rovnici.
|
||||||
|
|
||||||
\hfill \textit{konec 1. přednášky (21.2.2025)}
|
\hfill \textit{konec 1. přednášky (21.2.2025)}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue