formatovani
This commit is contained in:
parent
a42a17d731
commit
8026de7bda
2 changed files with 7 additions and 7 deletions
|
@ -5,14 +5,14 @@ V této kapitole budeme studovat druhy konvergence v pravděpodobnostních prost
|
|||
\begin{definition}
|
||||
Nechť $X_1, X_2, \dots$ je posloupnost náhodných veličin a nechť $X$ je jiná náhodná veličina. Nechť $F_n$ označuje distribuční funkci $X_n$ a nechť $F$ označuje distribuční funkci $X$. Potom $X_n$ \textit{konverguje k $X$ v pravděpodobnosti} (předpokládáme, že $X_i, X$ všechny ``žijí" na stejném pravděpodobnostním prostoru) , značíme $X_n \overset{P}{\underset{n \rightarrow \infty}{\longrightarrow}}$, pokud pro každé $\varepsilon > 0$,
|
||||
$$ P[|X_n - X| > \varepsilon] \overset{n \rightarrow \infty}{\rightarrow} 0. $$
|
||||
|
||||
|
||||
Dále $X_n$ \textit{konverguje k $X$ v distribuci}, značíme $X_n \overset{D}{\underset{n \rightarrow \infty}{\longrightarrow}} X$, pokud
|
||||
$$ \lim_{n \rightarrow \infty} F_n(x) = F(x) $$
|
||||
pro všechna $x$ kde je $F$ spojitá.
|
||||
|
||||
$X_n$ \textit{konverguje k $X$ v $L_p$} pro $p \geq 1$, značíme $X_n \overset{L^p}{\underset{n \rightarrow \infty}{\longrightarrow}} X$, pokud
|
||||
$$ \E |X_n - X|^p \overset{n \rightarrow \infty}\rightarrow 0. $$
|
||||
|
||||
|
||||
$X_n$ \textit{konverguje k $X$ skoro jistě}, značíme $X_n \overset{P-s.j.}{\underset{n \rightarrow \infty}{\longrightarrow}} X$, pokud
|
||||
$$ P[\lim_{n \rightarrow \infty} X_n = X] \equiv P[\omega \in \Omega: \lim_{n \rightarrow \infty} X_n(\omega) = X(\omega)]=1.$$
|
||||
\end{definition}
|
||||
|
@ -33,10 +33,10 @@ V této kapitole budeme studovat druhy konvergence v pravděpodobnostních prost
|
|||
\begin{proof}
|
||||
Budeme dokazovat postupně každou implikaci.
|
||||
\begin{enumerate}[(i)]
|
||||
\item Mějme $\varepsilon > 0$. Pro $n \in \N$ definujeme náhodné události
|
||||
\item Mějme $\varepsilon > 0$. Pro $n \in \N$ definujeme náhodné události
|
||||
$$ A_n := \{\omega \in \Omega: \exists m \geq n: |X_m(\omega) - X(\omega)| \geq \varepsilon \};$$
|
||||
$$ B_n := \{\omega: \Omega: |X_n(\omega) - X(\omega)| \geq \varepsilon \}. $$
|
||||
Chceme ukázat, že $P(B_n) \rightarrow 0$. Víme, že $A_n \supseteq B_n$, tedy díky monotonii pravděpodobnosti stačí ukázat, že $P(A_n) \rightarrow 0$. Reálná posloupnost $\{X_m(\omega)\}_m$ je konvergentní, jestliže existuje přirozené číslo $N$ takové, že pro žádné $m \geq N$ neplatí $|X_m(\omega) - X(\omega)| \geq \varepsilon$. Potom $\lim A_n$ je jev, že posloupnost $\{X_m(\omega)\}_m$ diverguje.
|
||||
Chceme ukázat, že $P(B_n) \rightarrow 0$. Víme, že $A_n \supseteq B_n$, tedy díky monotonii pravděpodobnosti stačí ukázat, že $P(A_n) \rightarrow 0$. Reálná posloupnost $\{X_m(\omega)\}_m$ je konvergentní, jestliže existuje přirozené číslo $N$ takové, že pro žádné $m \geq N$ neplatí $|X_m(\omega) - X(\omega)| \geq \varepsilon$. Potom $\lim A_n$ je jev, že posloupnost $\{X_m(\omega)\}_m$ diverguje.
|
||||
Ale dle předpokladu $X_n$ konverguje skoro jistě, tedy $P(\lim A_n) = 0$. Jelikož $A_1 \supset A_2 \supset \dots$, z věty o spojitosti míry (Věta \ref{thm-continuity}) dostáváme $P(\lim A_n) = \lim P(A_n) = 0$, čímž jsme dostali požadovanou konvergenci v pravděpodobnosti.
|
||||
\item Nechť $X_n \overset{L_p}\rightarrow X$. Podle Markovovy nerovnosti (Věta \ref{thm-markov-inequality}) platí
|
||||
$$ P(|X_n - X| \geq \varepsilon) = P(|X_n - X|^p \geq \varepsilon^p) \leq \frac{\E|X_n - X|^p}{\varepsilon^p} \rightarrow 0 $$
|
||||
|
@ -75,21 +75,21 @@ Uvedeme si několik protipříkladů, na kterých si ukážeme, že implikace op
|
|||
\begin{example}
|
||||
Ukážeme, že konvergence v pravděpodobnosti neimplikuje konvergenci v $L_p$. Mějme prostor $(\Omega = [0, 1], \mathcal{A} = \mathcal{B}(\Omega), P = \lambda)$. Každé přirozené číslo můžeme jednoznačně zapsat ve tvaru $2^n + m$, kde $m \in \{0, 1, \dots, 2^n - 1\}$ a definovat
|
||||
$$ X_{2^n + m}(\omega) = 2^n \chi_{\{\omega \in ((m-1)2^{-n}, m2^{-n}]\}}, \omega \in [0, 1]. $$
|
||||
|
||||
|
||||
Pak opět pro každé $\varepsilon \in (0, 1)$ dostaneme $P[|X_{2^n + m}| > \varepsilon] = 2^{-n} \rightarrow 0$. Tedy $X_n \overset{P}\rightarrow 0$. Nicméně, $\E |X_{2^n + m} - 0| = 2^n P[X_{2^n + m} = 2^n] = 2^n2^{-n} = 1$ a tedy posloupnost nekonverguje v $L_1$, tedy to nemůže konvergovat ani v vyšších $L_p, p > 1$.
|
||||
\end{example}
|
||||
|
||||
\begin{example}
|
||||
Ukážeme, že konvergence v $L_q$ neimplikuje konvergenci v $L_p$ pro $p > q \geq 1$. Mějme prostor $(\Omega = [0, 1], \mathcal{A} = \mathcal{B}(\Omega), P = \lambda)$. Každé přirozené číslo můžeme jednoznačně zapsat ve tvaru $2^n + m$, kde $m \in \{0, 1, \dots, 2^n - 1\}$ a definovat
|
||||
$$ X_{2^n + m}(\omega) = 2^{n/2} \chi_{\{\omega \in ((m-1)2^{-n}, m2^{-n}]\}}, \omega \in [0, 1]. $$
|
||||
|
||||
|
||||
Pak $\E |X_{2^n + m} - 0| = 2^{n/2} P[X_{2^n + m} = 2^n] = 2^{n/2}2^{-n}$ a tedy posloupnost konverguje v $L_1$.
|
||||
Nicméně, pro $p = 2$ máme $\E |X_{2^n + m} - 0|^2 = 2^{2(n/2)}2^{-n} = 1$ tedy posloupnost nekonverguje v $L_2$.
|
||||
\end{example}
|
||||
|
||||
\begin{example}
|
||||
Ukážeme, že konvergence v distribuci neimplikuje konvergenci v pravděpodobnosti. Nechť $X \sim N(0, 1)$ a $X_n := -X, n \in \N$. Tedy $X_n \sim N(0, 1)$ pro každé $n \in \N$. Tedy triviálně $\lim F_n(x) = F(x)$ pro všechna $x \in \R$. Tedy $X_n \overset{D}\rightarrow X$.
|
||||
|
||||
|
||||
Nicméně, $P[|X_n - X| > \varepsilon] = P[|2X| > \varepsilon] = P[|X| > \varepsilon/2] \neq 0$ (nezávislé na $n$), tedy posloupnost $X_n$ nekonverguje v pravděpodobnosti.
|
||||
\end{example}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue