latex formatovani

This commit is contained in:
Petr Velička 2025-02-27 12:10:50 +01:00
parent 63cef30364
commit 3b12908140
Signed by: petrvel
GPG key ID: E8F909AFE649174F
3 changed files with 92 additions and 80 deletions

View file

@ -30,27 +30,27 @@ Máme tedy jakýsi obraz míry $P$ v zobrazení $P_X$ čímž se $(\Omega, \math
Buď $g$ měřitelná funkce na měřitelném prostoru $(\mathbb{M}, \mathcal{M})$ a $X: (\Omega, \mathcal{A}, P) \rightarrow (\mathbb{M}, \mathcal{M})$.
Nechť $P_X$ je míra na $\mathcal{M}$ indukovaná zobrazením $X$, tedy $P_X(M) = P[X^{-1}(M)]$ pro $M \in \mathcal{M}$. Potom, je-li aspoň jedna strana definována, platí
$$\int_\Omega g[X(\omega)] dP(\omega) = \int_\mathbb{M} g(x) dP_X(x).$$
\begin{proof}
Důkaz této věty je poměrně technický, hlavní ideou je ``klasický" postup z teorie míry postupným důkazem nejdříve pro charakteristickou funkci, poté pro jednoduchou měřitelnou (nabývající jen konečně mnoha hodnot), pak pro nezápornou měřitelnou a na závěr pro obecnou měřitelnou funkci.
Nechť $g = \chi_B, B \in \mathcal{M}$. Tedy $g(X(\omega)) = 1$ pro $X(\omega) \in B$ (a všude jinde nulová), tedy pro $\omega \in X^{-1}(B)$. Potom máme
$$ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]. $$
Pro pravou stranu máme
$$ \int_\mathbb{M} g(x) dP_X(x) = \int_B dP_X(x) = P_X(B) = P[X^{-1}(B)].$$
Dále nechť $g$ je jednoduchá měřitelná, tedy $g(\cdot) = \sum_{k = 1}^{n} c_k \chi_{B_k}(\cdot)$ pro $n \in \mathbb{N}$, $c_k \in \mathbb{R}$ a $B_k \in \mathcal{M}$ pro všechna $k$.
Z linearity integrálu plyne (vytkneme sumu) $ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]$.
Je-li $g$ nezáporná měřitelná, potom existuje posloupnost $g_n$ jednoduchých měřitelných funkcí takových, že $g_n \nearrow g$. Potom dle Léviho věty o monotonní konvergenci máme
$$\int_\Omega g[X(\omega)] dP(\omega) = \lim_{n\rightarrow\infty} \int_\Omega g_n[X(\omega)] dP(\omega) $$
$$ = \lim_{n\rightarrow\infty} \int_\mathbb{M} g_n(x) dP_X(x) = \int_\mathbb{M} g(x) dP_X(x),$$
kde třetí rovnost plyne z již dokázané části pro jednoduché měřitelné funkce.
Nakonec, pro $g$ měřitelnou existuje rozklad $g = g^+ - g^-$ takový, že $g^+, g^-$ jsou nezáporné měřitelné, tedy požadované tvrzení plyne z části pro nezáporné měřitelné funkce.
\end{proof}
\end{theorem}
\begin{proof}
Důkaz této věty je poměrně technický, hlavní ideou je ``klasický" postup z teorie míry postupným důkazem nejdříve pro charakteristickou funkci, poté pro jednoduchou měřitelnou (nabývající jen konečně mnoha hodnot), pak pro nezápornou měřitelnou a na závěr pro obecnou měřitelnou funkci.
Nechť $g = \chi_B, B \in \mathcal{M}$. Tedy $g(X(\omega)) = 1$ pro $X(\omega) \in B$ (a všude jinde nulová), tedy pro $\omega \in X^{-1}(B)$. Potom máme
$$ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]. $$
Pro pravou stranu máme
$$ \int_\mathbb{M} g(x) dP_X(x) = \int_B dP_X(x) = P_X(B) = P[X^{-1}(B)].$$
Dále nechť $g$ je jednoduchá měřitelná, tedy $g(\cdot) = \sum_{k = 1}^{n} c_k \chi_{B_k}(\cdot)$ pro $n \in \mathbb{N}$, $c_k \in \mathbb{R}$ a $B_k \in \mathcal{M}$ pro všechna $k$.
Z linearity integrálu plyne (vytkneme sumu) $ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]$.
Je-li $g$ nezáporná měřitelná, potom existuje posloupnost $g_n$ jednoduchých měřitelných funkcí takových, že $g_n \nearrow g$. Potom dle Léviho věty o monotonní konvergenci máme
$$\int_\Omega g[X(\omega)] dP(\omega) = \lim_{n\rightarrow\infty} \int_\Omega g_n[X(\omega)] dP(\omega) $$
$$ = \lim_{n\rightarrow\infty} \int_\mathbb{M} g_n(x) dP_X(x) = \int_\mathbb{M} g(x) dP_X(x),$$
kde třetí rovnost plyne z již dokázané části pro jednoduché měřitelné funkce.
Nakonec, pro $g$ měřitelnou existuje rozklad $g = g^+ - g^-$ takový, že $g^+, g^-$ jsou nezáporné měřitelné, tedy požadované tvrzení plyne z části pro nezáporné měřitelné funkce.
\end{proof}
Na závěr poznamenejme, že se nám budou obzvlášť hodit volby $(\mathbb{M}, \mathcal{M}) = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ pro $n \geq 1$.
Připomeňme si, že jsou-li $\mu, \nu$ dvě $\sigma$-konečné míry na $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a je-li $\nu << \mu$ (tedy $\mu(B) = 0$ implikuje $\nu(B) = 0$), potom z Radonovy-Nikodymovy věty plyne existence nezáporné měřitelné funkce $f$ takové, že $\nu(B) = \int_\mathbb{R} fd\mu$ pro všechna $B \in \mathcal{B}$. Této funkci $f$ říkáme Radonova-Nikodymova derivace a píšeme $f = \frac{d\nu}{d\mu}$. Taková funkce $f$ je navíc určena jednoznačně až na množinu $\mu$-míry $0$.
@ -70,11 +70,12 @@ Je třeba si dát pozor na to, aby zvolená referenční míra opravdu byla abso
\begin{theorem}
Buď $X$ náhodná veličina a $P_X$ její rozdělení. Je-li $f_X$ hustota (rozdělení) vůči $\sigma$-konečné míře $\mu$, pak
$$P[X\in B] = \int_B f_X d\mu.$$
\begin{proof}
Přímý důsledek Radonovy-Nikodymovy věty a vztahu mezi $P_X$ a $P$.
\end{proof}
\end{theorem}
\begin{proof}
Jde o přímý důsledek Radonovy-Nikodymovy věty a vztahu mezi $P_X$ a $P$.
\end{proof}
Další funkcí, která plně charakterizuje rozdělení náhodné veličiny je tzv. distribuční funkce.
\begin{definition}
@ -125,17 +126,18 @@ Vidíme, že hustota odpovídá skokům distribuční funkce v daném bodě. V n
\end{enumerate}
Navíc, každá funkce $F$ splňující body (i)-(iii) z této věty je distribuční funkcí nějaké náhodné veličiny.
\begin{proof}
Dokážeme pouze implikaci o vlastnostech distribuční funkce, opačná implikace (existuje rozdělení) vyžaduje pokročilý matematický aparát z analýzy a teorie míry, který prozatím postrádáme.
\begin{enumerate}[(i)]
\item $F_X(a)= P[X \leq a]$. Bez újmy na obecnosti nechť $b > a$. Potom $F_X(b) = P[X \leq b] = P([X \leq a] \cup [a < X \leq b]) = P[X \leq a] + P[a < X \leq b]$ z aditivity míry, druhý sčítanec je nezáporný, tedy dostáváme požadované tvrzení.
\item Platí $\lim_{a\rightarrow -\infty} = \lim_{n\rightarrow\infty} F_X(-n) = \lim_{n\rightarrow\infty} P[X \in (-\infty, -n]] =: $\\$\lim_{n\rightarrow\infty} P[X \in A_n] = 0$. Poslední rovnost platí ze spojitosti míry (v prázdné množině), neboť platí $A_n \swarrow \emptyset$. Obdobně se ukáže tvrzení pro $a \rightarrow + \infty$ (cvičení).
\item Stačí uvažovat postoupnost $a_n = a + \frac{1}{n}$ pro $n \in \mathbb{N}$. Požadované tvrzení opět plyne z věty o spojitosti míry.
\end{enumerate}
\end{proof}
\end{theorem}
\begin{proof}
Dokážeme pouze implikaci o vlastnostech distribuční funkce, opačná implikace (existuje rozdělení) vyžaduje pokročilý matematický aparát z analýzy a teorie míry, který prozatím postrádáme.
\begin{enumerate}[(i)]
\item $F_X(a)= P[X \leq a]$. Bez újmy na obecnosti nechť $b > a$. Potom $F_X(b) = P[X \leq b] = P([X \leq a] \cup [a < X \leq b]) = P[X \leq a] + P[a < X \leq b]$ z aditivity míry, druhý sčítanec je nezáporný, tedy dostáváme požadované tvrzení.
\item Platí $\lim_{a\rightarrow -\infty} = \lim_{n\rightarrow\infty} F_X(-n) = \lim_{n\rightarrow\infty} P[X \in (-\infty, -n]] =: $\\$\lim_{n\rightarrow\infty} P[X \in A_n] = 0$. Poslední rovnost platí ze spojitosti míry (v prázdné množině), neboť platí $A_n \swarrow \emptyset$. Obdobně se ukáže tvrzení pro $a \rightarrow + \infty$ (cvičení).
\item Stačí uvažovat postoupnost $a_n = a + \frac{1}{n}$ pro $n \in \mathbb{N}$. Požadované tvrzení opět plyne z věty o spojitosti míry.
\end{enumerate}
\end{proof}
Pro každou funkci $F$ splňující vlastnosti z předchozí věty existuje míra $\mu_F$ na $(\mathbb{R}, \mathcal{B})$ určená vztahem $\mu_F((-\infty, a]) = F(a)$ pro všechna $a$. Tato míra je konečná a platí $\mu_F((a, b]) = F(b) - F(b)$.
\begin{definition}{\textbf{(Rozklad pravděpodobnostního rozdělení)}}
@ -170,12 +172,13 @@ Ne každá veličina, se kterou se běžně setkáme je ryze spojitá nebo ryze
\item $P[X = a] = F_X(a) - F_X(a^-)$, kde $F_X(a^-)$ je limita zleva $\lim_{h\rightarrow 0^+} F_X(a - h)$ a odtud $P[a \leq X \leq b] = F_X(b) - F_X(a^-)$.
\item pro spojitou náhodnou veličinu platí $P[a\leq X \leq b] = P[a \leq X < b] = F_X(b) - F_X(a)$.
\end{enumerate}
\begin{proof}
Důkaz je jednoduchý, plyne z příslušných definic. Uvedeme např. důkaz pro bod (iii).
$P[X = a] = \lim_{h\rightarrow 0^+} P[a - h < X \leq a] = F_X(a) - \lim_{h\rightarrow 0^+} F_X(a - h)$.
\end{proof}
\end{lemma}
\begin{proof}
Důkaz je jednoduchý, plyne z příslušných definic. Uvedeme např. důkaz pro bod (iii).
$P[X = a] = \lim_{h\rightarrow 0^+} P[a - h < X \leq a] = F_X(a) - \lim_{h\rightarrow 0^+} F_X(a - h)$.
\end{proof}
\hfill \textit{konec 4. přednášky (25.2.2025)}