latex formatovani
This commit is contained in:
parent
63cef30364
commit
3b12908140
3 changed files with 92 additions and 80 deletions
|
@ -12,11 +12,12 @@ Pro ilustraci uvedeme následující motivační příklad, kde podrobně popí
|
||||||
Házíme dvakrát férovou mincí. Naším výběrovým prostorem bude množina $\Omega = \{PP, PO, OP, OO\}$. Událost, že první hod je panna, je tedy $A = \{PP, PO\}$. V tomto zápise písmeno $P$ odpovídá tomu, že padla panna, kdežto písmeno $O$ odpovídá orlu.
|
Házíme dvakrát férovou mincí. Naším výběrovým prostorem bude množina $\Omega = \{PP, PO, OP, OO\}$. Událost, že první hod je panna, je tedy $A = \{PP, PO\}$. V tomto zápise písmeno $P$ odpovídá tomu, že padla panna, kdežto písmeno $O$ odpovídá orlu.
|
||||||
|
|
||||||
Dále uvažujme jevy $H_1$ -- při prvním hodu padne panna, a $H_2$ -- při druhém hodu padne panna. Nechť jsou všechny výsledky stejně pravděpodobné (jinými slovy, mince je férová), potom pravděpodobnost, že padne alespoň jedna panna (tj. nastane jev $H_1 \cup H_2$) je $\frac{3}{4}$.
|
Dále uvažujme jevy $H_1$ -- při prvním hodu padne panna, a $H_2$ -- při druhém hodu padne panna. Nechť jsou všechny výsledky stejně pravděpodobné (jinými slovy, mince je férová), potom pravděpodobnost, že padne alespoň jedna panna (tj. nastane jev $H_1 \cup H_2$) je $\frac{3}{4}$.
|
||||||
\begin{proof}
|
|
||||||
Zřejmě z předchozího máme $H_1 = \{PP, PO\}$ a $H_2 = \{OP, PP\}$. Pravděpodobnost spočteme jako podíl velikosti $|H_1 \cup H_2| = 3$ a velikosti celého prostoru $|\Omega| = 4$.
|
|
||||||
\end{proof}
|
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Zřejmě z předchozího máme $H_1 = \{PP, PO\}$ a $H_2 = \{OP, PP\}$. Pravděpodobnost spočteme jako podíl velikosti $|H_1 \cup H_2| = 3$ a velikosti celého prostoru $|\Omega| = 4$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
Tato jednoduchá intuice však selže v případě nekonečné (nespočetné) množiny $\Omega$, neboť jak již čtenář jistě ví z přednášky základů teorie míry, na nespočetné množině neexistuje ``rozumný" způsob, jak měřit množiny. Musíme proto pracovat pouze s jistou třídou podmnožin $\Omega$, které budeme říkat $\sigma$-algebra.
|
Tato jednoduchá intuice však selže v případě nekonečné (nespočetné) množiny $\Omega$, neboť jak již čtenář jistě ví z přednášky základů teorie míry, na nespočetné množině neexistuje ``rozumný" způsob, jak měřit množiny. Musíme proto pracovat pouze s jistou třídou podmnožin $\Omega$, které budeme říkat $\sigma$-algebra.
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
@ -53,33 +54,36 @@ Přímo z této definice již můžeme odvodit pár základních vlastností pra
|
||||||
\item Pro $A \in \mathcal{A}$ platí $P(A^C) = 1 - P(A)$,
|
\item Pro $A \in \mathcal{A}$ platí $P(A^C) = 1 - P(A)$,
|
||||||
\item Pro $A, B \in \mathcal{A}, A \subset B$ platí $P(A) \leq P(B)$.
|
\item Pro $A, B \in \mathcal{A}, A \subset B$ platí $P(A) \leq P(B)$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\begin{proof}
|
|
||||||
\begin{enumerate}
|
|
||||||
\item Uvažujme posloupnost $A_1 = \Omega, A_2 = A_3 = \dots = \emptyset$. Potom z vlastnosti (ii) z definice máme, že $P(\Omega) = P(\Omega \cup \emptyset \cup \emptyset \dots) = P(\Omega) + \sum_{n=2}^\infty P(\emptyset)$. Tedy $\sum_{n=2}^\infty P(\emptyset) = 0$, což může nastat pouze v případě $P(\emptyset) = 0$ (jde o součet nekonečně mnoha nezáporných čísel).
|
|
||||||
\item Nechť $A_1 = A, A_2 = B, A_i = \emptyset$ pro $i > 2$. Tvrzení plyne přímo z vlastnosti (ii) z definice pravděpodobnostní míry a již dokázané vlastnosti 1.
|
|
||||||
\item $1 = P(\Omega) = P(A \cup A^C) = P(A) + P(A^C)$. Tato rovnost platí, neboť množina je vždy disjunktní se svým komplementem.
|
|
||||||
\item $P(B) = P(A \cup B\setminus A) = P(A) + P(B\setminus A)$. Jelikož funkce $P$ je nezáporná, snadno vidíme, že $P(B) \geq P(A)$.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{proof}
|
|
||||||
\end{observation}
|
\end{observation}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
\begin{enumerate}
|
||||||
|
\item Uvažujme posloupnost $A_1 = \Omega, A_2 = A_3 = \dots = \emptyset$. Potom z vlastnosti (ii) z definice máme, že $P(\Omega) = P(\Omega \cup \emptyset \cup \emptyset \dots) = P(\Omega) + \sum_{n=2}^\infty P(\emptyset)$. Tedy $\sum_{n=2}^\infty P(\emptyset) = 0$, což může nastat pouze v případě $P(\emptyset) = 0$ (jde o součet nekonečně mnoha nezáporných čísel).
|
||||||
|
\item Nechť $A_1 = A, A_2 = B, A_i = \emptyset$ pro $i > 2$. Tvrzení plyne přímo z vlastnosti (ii) z definice pravděpodobnostní míry a již dokázané vlastnosti 1.
|
||||||
|
\item $1 = P(\Omega) = P(A \cup A^C) = P(A) + P(A^C)$. Tato rovnost platí, neboť množina je vždy disjunktní se svým komplementem.
|
||||||
|
\item $P(B) = P(A \cup B\setminus A) = P(A) + P(B\setminus A)$. Jelikož funkce $P$ je nezáporná, snadno vidíme, že $P(B) \geq P(A)$.
|
||||||
|
\end{enumerate}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\begin{lemma}{\textbf{(Pravděpodobnost sjednocení)}}
|
\begin{lemma}{\textbf{(Pravděpodobnost sjednocení)}}
|
||||||
Pro libovolné $A, B \in \mathcal{A}$ platí $P(A \cup B) = P(A) + P(B) - P(A\cap B)$.
|
Pro libovolné $A, B \in \mathcal{A}$ platí $P(A \cup B) = P(A) + P(B) - P(A\cap B)$.
|
||||||
\begin{proof}
|
|
||||||
Rozepíšeme $A \cup B = (A \cap B^C) \cup (A \cap B) \cup (A^C \cap B)$. Tyto tři množiny jsou zřejmě po dvou disjunktní. Dále díky aditivitě pravděpodobnosti máme $P(A \cup B) = P(A\cap B^C) + P(A \cap B) + P(A^C\cap B) + P(A \cap B) - P(A \cap B) = P(A) + P(B) - P(A \cap B)$.
|
|
||||||
\end{proof}
|
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Rozepíšeme $A \cup B = (A \cap B^C) \cup (A \cap B) \cup (A^C \cap B)$. Tyto tři množiny jsou zřejmě po dvou disjunktní. Dále díky aditivitě pravděpodobnosti máme $P(A \cup B) = P(A\cap B^C) + P(A \cap B) + P(A^C\cap B) + P(A \cap B) - P(A \cap B) = P(A) + P(B) - P(A \cap B)$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\begin{theorem}{\textbf{(Spojitost pravděpodobnosti)}}
|
\begin{theorem}{\textbf{(Spojitost pravděpodobnosti)}}
|
||||||
Buď $A_n \uparrow A$ nebo $A_n \downarrow A$ pro $A_n, A \in \mathcal{A}$. Potom platí $P(A_n) \rightarrow P(A)$.
|
Buď $A_n \uparrow A$ nebo $A_n \downarrow A$ pro $A_n, A \in \mathcal{A}$. Potom platí $P(A_n) \rightarrow P(A)$.
|
||||||
\begin{proof}
|
|
||||||
Nechť $A_n \uparrow A$. Potom z definice $A_1 \subset A_2 \dots$ a platí $A = \bigcup_{i=1}^\infty A_i$.
|
|
||||||
Definujme posloupnost $B_n$: $B_1 = A_1, B_n = A_n\setminus A_{n-1}$. Potom $B_i$ jsou po dvou disjunktní a platí $A_n = \bigcup_{i=1}^{n}B_i$. Zřejmě také platí $A \equiv \bigcup_{n=1}^\infty A_n = \bigcup_{n=1}^\infty B_n$. Pak $P(A_n) = P(\bigcup_{i=1}^n B_i) = \sum_{i=1}^n P(B_i)$. Z toho již můžeme odvodit $\lim_{n\rightarrow\infty} P(A_n) = \lim_{n\rightarrow\infty} \sum_{i=1}^n P(B_i) = \sum_{i=1}^\infty P(B_i) = P(\bigcup_{i=1}^{\infty} B_i) = P(A)$.
|
|
||||||
|
|
||||||
Případ klesající $A_n$ se dokáže analogicky, stačí uvažovat $C_n = A_n^C$.
|
|
||||||
\end{proof}
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Nechť $A_n \uparrow A$. Potom z definice $A_1 \subset A_2 \dots$ a platí $A = \bigcup_{i=1}^\infty A_i$.
|
||||||
|
Definujme posloupnost $B_n$: $B_1 = A_1, B_n = A_n\setminus A_{n-1}$. Potom $B_i$ jsou po dvou disjunktní a platí $A_n = \bigcup_{i=1}^{n}B_i$. Zřejmě také platí $A \equiv \bigcup_{n=1}^\infty A_n = \bigcup_{n=1}^\infty B_n$. Pak $P(A_n) = P(\bigcup_{i=1}^n B_i) = \sum_{i=1}^n P(B_i)$. Z toho již můžeme odvodit $\lim_{n\rightarrow\infty} P(A_n) = \lim_{n\rightarrow\infty} \sum_{i=1}^n P(B_i) = \sum_{i=1}^\infty P(B_i) = P(\bigcup_{i=1}^{\infty} B_i) = P(A)$.
|
||||||
|
|
||||||
|
Případ klesající $A_n$ se dokáže analogicky, stačí uvažovat $C_n = A_n^C$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\hfill \textit{konec 1. přednášky (17.2.2025)} \newpage
|
\hfill \textit{konec 1. přednášky (17.2.2025)} \newpage
|
||||||
|
|
||||||
Uvedeme si ještě jeden příklad ilustrující intuitivní chápání pravděpodobnosti a zavedeme první takzvané pravděpodobnostní rozdělení. Uvažujme případ, že prostor $\Omega$ je konečný. Nechť všechny výsledky jsou stejně pravděpodobné, pak platí
|
Uvedeme si ještě jeden příklad ilustrující intuitivní chápání pravděpodobnosti a zavedeme první takzvané pravděpodobnostní rozdělení. Uvažujme případ, že prostor $\Omega$ je konečný. Nechť všechny výsledky jsou stejně pravděpodobné, pak platí
|
||||||
|
@ -101,11 +105,12 @@ Je důležité si uvědomit, že disjunktní události s kladnou pravděpodobnos
|
||||||
|
|
||||||
\begin{example}
|
\begin{example}
|
||||||
Házíme férovou mincí 10krát. Nechť $A$ je událost ``padla aspoň jedna panna". Pak platí $P(A) = 1 - (1/2)^{10}$.
|
Házíme férovou mincí 10krát. Nechť $A$ je událost ``padla aspoň jedna panna". Pak platí $P(A) = 1 - (1/2)^{10}$.
|
||||||
\begin{proof}
|
|
||||||
Nechť $T_j$ je událost, že při $j$-tém hodu padne orel. Můžeme psát $P(A) = 1 - P(A^C) = 1 - P(\text{samé orly}) = 1 - P(T_1 \cap \dots \cap T_{10})$. Dále díky nezávislosti (v tomto případě jde o nezávislost předpokládanou) jevů $T_j$ máme $1 - P(T_1 \cap \dots \cap T_{10}) = 1 - P(T_1)\cdots P(T_{10}) = 1 - (1/2)^{10} \approx 0.999$.
|
|
||||||
\end{proof}
|
|
||||||
\end{example}
|
\end{example}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Nechť $T_j$ je událost, že při $j$-tém hodu padne orel. Můžeme psát $P(A) = 1 - P(A^C) = 1 - P(\text{samé orly}) = 1 - P(T_1 \cap \dots \cap T_{10})$. Dále díky nezávislosti (v tomto případě jde o nezávislost předpokládanou) jevů $T_j$ máme $1 - P(T_1 \cap \dots \cap T_{10}) = 1 - P(T_1)\cdots P(T_{10}) = 1 - (1/2)^{10} \approx 0.999$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
Dalším silným nástrojem v teorii pravděpodobnosti je podmíněná pravděpodobnost, která nám poskytuje odpověď na otázku ``Pokud vím, že nastala událost $B$, jaká je pravděpodobnost události $A$?".
|
Dalším silným nástrojem v teorii pravděpodobnosti je podmíněná pravděpodobnost, která nám poskytuje odpověď na otázku ``Pokud vím, že nastala událost $B$, jaká je pravděpodobnost události $A$?".
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
@ -121,16 +126,17 @@ Poznamenejme si několik základních vlastností podmíněné pravděpodobnosti
|
||||||
\item Události $A$ a $B$ jsou nezávislé právě tehdy, když $P(A|B) = P(A)$ (předpokládáme nenulovost $P(B)$).
|
\item Události $A$ a $B$ jsou nezávislé právě tehdy, když $P(A|B) = P(A)$ (předpokládáme nenulovost $P(B)$).
|
||||||
\item $P(A\cap B) = P(A|B)P(B) = P(B|A)P(A)$ v případě, že $P(A)P(B) > 0$.
|
\item $P(A\cap B) = P(A|B)P(B) = P(B|A)P(A)$ v případě, že $P(A)P(B) > 0$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\begin{proof}
|
|
||||||
Vlastnosti (iii) a (iv) plynou přímo z definice vynásobením vhodnou konstantou.
|
|
||||||
|
|
||||||
Vlastnost (ii) se dokáže následujícím protipříkladem, uvažujme hod dvěma férovými mincemi. Nechť $H_1$ je událost ``padla aspoň jedna panna" a $H_2$ událost ``padly dvě panny". Potom $P(H_1|H_2) = 1$ ale $P(H_2|H_1) = \frac{1}{3}$. Důkaz obecného vztahu je ponechán čtenáři jako snadné (ale užitečné) cvičení.
|
|
||||||
|
|
||||||
Nakonec, vlastnost (i) je důsledkem toho, že pro libovolnou množinu $A \in \mathcal{A}$ je $A \cap B$ měřitelná, a navíc pro libovolný systém po dvou disjunktních množin $A_i, i \in \mathbb{N}$ platí $P(\bigcup_{i=1}^\infty A_i | B) = \frac{1}{P(B)} P\left(\left(\bigcup_{i=1}^\infty A_i\right) \cap B\right) = $\\
|
|
||||||
$\frac{1}{P(B)} P\left(\bigcup_{i=1}^\infty (A_i \cap B)\right) = \frac{1}{P(B)} \sum_{i=1}^\infty P(A_i \cap B) = \sum_{i=1}^\infty P(A_i|B)$.
|
|
||||||
\end{proof}
|
|
||||||
\end{observation}
|
\end{observation}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Vlastnosti (iii) a (iv) plynou přímo z definice vynásobením vhodnou konstantou.
|
||||||
|
|
||||||
|
Vlastnost (ii) se dokáže následujícím protipříkladem, uvažujme hod dvěma férovými mincemi. Nechť $H_1$ je událost ``padla aspoň jedna panna" a $H_2$ událost ``padly dvě panny". Potom $P(H_1|H_2) = 1$ ale $P(H_2|H_1) = \frac{1}{3}$. Důkaz obecného vztahu je ponechán čtenáři jako snadné (ale užitečné) cvičení.
|
||||||
|
|
||||||
|
Nakonec, vlastnost (i) je důsledkem toho, že pro libovolnou množinu $A \in \mathcal{A}$ je $A \cap B$ měřitelná, a navíc pro libovolný systém po dvou disjunktních množin $A_i, i \in \mathbb{N}$ platí $P(\bigcup_{i=1}^\infty A_i | B) = \frac{1}{P(B)} P\left(\left(\bigcup_{i=1}^\infty A_i\right) \cap B\right) = $\\
|
||||||
|
$\frac{1}{P(B)} P\left(\bigcup_{i=1}^\infty (A_i \cap B)\right) = \frac{1}{P(B)} \sum_{i=1}^\infty P(A_i \cap B) = \sum_{i=1}^\infty P(A_i|B)$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
Použití podmíněné pravděpodobnosti v praxi však někdy může vést k neintuitivním výsledkům, které ilustruje následující příklad.
|
Použití podmíněné pravděpodobnosti v praxi však někdy může vést k neintuitivním výsledkům, které ilustruje následující příklad.
|
||||||
|
|
||||||
\begin{example}
|
\begin{example}
|
||||||
|
@ -162,22 +168,24 @@ Na závěr uvedeme dvě velmi užitečné věty, které se často používají v
|
||||||
\label{thm-complete-probability}
|
\label{thm-complete-probability}
|
||||||
Nechť $A_1, A_2, \dots$ je spočetný disjunktní rozklad $\Omega$ takový, že $P(A_i) > 0$ pro každé $i \in \mathbb{N}$. Potom pro libovolnou událost $B \in \mathcal{A}$ platí:
|
Nechť $A_1, A_2, \dots$ je spočetný disjunktní rozklad $\Omega$ takový, že $P(A_i) > 0$ pro každé $i \in \mathbb{N}$. Potom pro libovolnou událost $B \in \mathcal{A}$ platí:
|
||||||
$$P(B) = \sum_{i=1}^\infty P(B|A_i) P(A_i).$$
|
$$P(B) = \sum_{i=1}^\infty P(B|A_i) P(A_i).$$
|
||||||
\begin{proof}
|
|
||||||
Definujme posloupnost množin $C_i = B \cap A_i$ pro $i\in \mathbb{N}$. Zjevně $\{C_i, i \in \mathbb{N}\}$ je disjunktní pokrytí $B$. Potom $P(B) = \sum_{i=1}^\infty P(C_i) = \sum_{i=1}^\infty P(B \cap A_i) = \sum_{i=1}^\infty P(B|A_i)P(A_i)$.
|
|
||||||
\end{proof}
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Definujme posloupnost množin $C_i = B \cap A_i$ pro $i\in \mathbb{N}$. Zjevně $\{C_i, i \in \mathbb{N}\}$ je disjunktní pokrytí $B$. Potom $P(B) = \sum_{i=1}^\infty P(C_i) = \sum_{i=1}^\infty P(B \cap A_i) = \sum_{i=1}^\infty P(B|A_i)P(A_i)$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\begin{theorem}{\textbf{(Bayes)}}
|
\begin{theorem}{\textbf{(Bayes)}}
|
||||||
\label{thm-bayes}
|
\label{thm-bayes}
|
||||||
Nechť $A_1, A_2, \dots$ je spočetný disjunktní rozklad $\Omega$ takový, že $P(A_i) > 0$ pro každé $i \in \mathbb{N}$. Mějme událost $B \in \mathcal{A}$ s nenulovou pravděpodobností. Potom platí:
|
Nechť $A_1, A_2, \dots$ je spočetný disjunktní rozklad $\Omega$ takový, že $P(A_i) > 0$ pro každé $i \in \mathbb{N}$. Mějme událost $B \in \mathcal{A}$ s nenulovou pravděpodobností. Potom platí:
|
||||||
$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^\infty P(B|A_j)P(A_j)}.$$
|
$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^\infty P(B|A_j)P(A_j)}.$$
|
||||||
\begin{proof}
|
|
||||||
Přímým výpočtem dostáváme
|
|
||||||
$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^\infty P(B|A_j) P(A_j)},$$
|
|
||||||
kde poslední rovnost získáme aplikací \textit{Věty \ref{thm-complete-probability}}.
|
|
||||||
\end{proof}
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Přímým výpočtem dostáváme
|
||||||
|
$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)} = \frac{P(B|A_i)P(A_i)}{P(B)} = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^\infty P(B|A_j) P(A_j)},$$
|
||||||
|
kde poslední rovnost získáme aplikací \textit{Věty \ref{thm-complete-probability}}.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
Použití Bayesovy věty si ukážeme na následujícím příkladu.
|
Použití Bayesovy věty si ukážeme na následujícím příkladu.
|
||||||
|
|
||||||
\begin{example}
|
\begin{example}
|
||||||
|
@ -192,9 +200,10 @@ Použití Bayesovy věty si ukážeme na následujícím příkladu.
|
||||||
\begin{theorem}{\textbf{(O postupném podmiňování)}}
|
\begin{theorem}{\textbf{(O postupném podmiňování)}}
|
||||||
Nechť $\{A_i\}_{i=1}^n$ jsou náhodné jevy takové, že $P(\bigcap_{i=1}^n) > 0$. Pak platí
|
Nechť $\{A_i\}_{i=1}^n$ jsou náhodné jevy takové, že $P(\bigcap_{i=1}^n) > 0$. Pak platí
|
||||||
$$ P(\bigcap_{i=1}^n A_i ) = P(A_n | \bigcap_{i=1}^{n-1}) \cdot P(A_2|A_1) \cdot P(A_1). $$
|
$$ P(\bigcap_{i=1}^n A_i ) = P(A_n | \bigcap_{i=1}^{n-1}) \cdot P(A_2|A_1) \cdot P(A_1). $$
|
||||||
\begin{proof}
|
|
||||||
Dokazujeme indukcí podle počtu náhodných jevů. Z definice podmíněné pravděpodobnosti víme, že $P(A_2 \cap A_1) = P(A_2 | A_1) P(A_1)$. Dále
|
|
||||||
$$P\left(\bigcap_{i=1}^n\right) = P\left(A_n \cap \left(\bigcap_{i=1}^{n-1} A_i\right)\right) = P\left(A_n | \bigcap_{i=1}^{n-1}\right) P\left(\bigcap_{i=1}^{n-1}\right),$$
|
|
||||||
čímž je důkaz ukončen.
|
|
||||||
\end{proof}
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Dokazujeme indukcí podle počtu náhodných jevů. Z definice podmíněné pravděpodobnosti víme, že $P(A_2 \cap A_1) = P(A_2 | A_1) P(A_1)$. Dále
|
||||||
|
$$P\left(\bigcap_{i=1}^n\right) = P\left(A_n \cap \left(\bigcap_{i=1}^{n-1} A_i\right)\right) = P\left(A_n | \bigcap_{i=1}^{n-1}\right) P\left(\bigcap_{i=1}^{n-1}\right),$$
|
||||||
|
čímž je důkaz ukončen.
|
||||||
|
\end{proof}
|
||||||
|
|
|
@ -30,27 +30,27 @@ Máme tedy jakýsi obraz míry $P$ v zobrazení $P_X$ čímž se $(\Omega, \math
|
||||||
Buď $g$ měřitelná funkce na měřitelném prostoru $(\mathbb{M}, \mathcal{M})$ a $X: (\Omega, \mathcal{A}, P) \rightarrow (\mathbb{M}, \mathcal{M})$.
|
Buď $g$ měřitelná funkce na měřitelném prostoru $(\mathbb{M}, \mathcal{M})$ a $X: (\Omega, \mathcal{A}, P) \rightarrow (\mathbb{M}, \mathcal{M})$.
|
||||||
Nechť $P_X$ je míra na $\mathcal{M}$ indukovaná zobrazením $X$, tedy $P_X(M) = P[X^{-1}(M)]$ pro $M \in \mathcal{M}$. Potom, je-li aspoň jedna strana definována, platí
|
Nechť $P_X$ je míra na $\mathcal{M}$ indukovaná zobrazením $X$, tedy $P_X(M) = P[X^{-1}(M)]$ pro $M \in \mathcal{M}$. Potom, je-li aspoň jedna strana definována, platí
|
||||||
$$\int_\Omega g[X(\omega)] dP(\omega) = \int_\mathbb{M} g(x) dP_X(x).$$
|
$$\int_\Omega g[X(\omega)] dP(\omega) = \int_\mathbb{M} g(x) dP_X(x).$$
|
||||||
|
|
||||||
\begin{proof}
|
|
||||||
Důkaz této věty je poměrně technický, hlavní ideou je ``klasický" postup z teorie míry postupným důkazem nejdříve pro charakteristickou funkci, poté pro jednoduchou měřitelnou (nabývající jen konečně mnoha hodnot), pak pro nezápornou měřitelnou a na závěr pro obecnou měřitelnou funkci.
|
|
||||||
|
|
||||||
Nechť $g = \chi_B, B \in \mathcal{M}$. Tedy $g(X(\omega)) = 1$ pro $X(\omega) \in B$ (a všude jinde nulová), tedy pro $\omega \in X^{-1}(B)$. Potom máme
|
|
||||||
$$ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]. $$
|
|
||||||
Pro pravou stranu máme
|
|
||||||
$$ \int_\mathbb{M} g(x) dP_X(x) = \int_B dP_X(x) = P_X(B) = P[X^{-1}(B)].$$
|
|
||||||
|
|
||||||
Dále nechť $g$ je jednoduchá měřitelná, tedy $g(\cdot) = \sum_{k = 1}^{n} c_k \chi_{B_k}(\cdot)$ pro $n \in \mathbb{N}$, $c_k \in \mathbb{R}$ a $B_k \in \mathcal{M}$ pro všechna $k$.
|
|
||||||
Z linearity integrálu plyne (vytkneme sumu) $ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]$.
|
|
||||||
|
|
||||||
Je-li $g$ nezáporná měřitelná, potom existuje posloupnost $g_n$ jednoduchých měřitelných funkcí takových, že $g_n \nearrow g$. Potom dle Léviho věty o monotonní konvergenci máme
|
|
||||||
$$\int_\Omega g[X(\omega)] dP(\omega) = \lim_{n\rightarrow\infty} \int_\Omega g_n[X(\omega)] dP(\omega) $$
|
|
||||||
$$ = \lim_{n\rightarrow\infty} \int_\mathbb{M} g_n(x) dP_X(x) = \int_\mathbb{M} g(x) dP_X(x),$$
|
|
||||||
kde třetí rovnost plyne z již dokázané části pro jednoduché měřitelné funkce.
|
|
||||||
|
|
||||||
Nakonec, pro $g$ měřitelnou existuje rozklad $g = g^+ - g^-$ takový, že $g^+, g^-$ jsou nezáporné měřitelné, tedy požadované tvrzení plyne z části pro nezáporné měřitelné funkce.
|
|
||||||
\end{proof}
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Důkaz této věty je poměrně technický, hlavní ideou je ``klasický" postup z teorie míry postupným důkazem nejdříve pro charakteristickou funkci, poté pro jednoduchou měřitelnou (nabývající jen konečně mnoha hodnot), pak pro nezápornou měřitelnou a na závěr pro obecnou měřitelnou funkci.
|
||||||
|
|
||||||
|
Nechť $g = \chi_B, B \in \mathcal{M}$. Tedy $g(X(\omega)) = 1$ pro $X(\omega) \in B$ (a všude jinde nulová), tedy pro $\omega \in X^{-1}(B)$. Potom máme
|
||||||
|
$$ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]. $$
|
||||||
|
Pro pravou stranu máme
|
||||||
|
$$ \int_\mathbb{M} g(x) dP_X(x) = \int_B dP_X(x) = P_X(B) = P[X^{-1}(B)].$$
|
||||||
|
|
||||||
|
Dále nechť $g$ je jednoduchá měřitelná, tedy $g(\cdot) = \sum_{k = 1}^{n} c_k \chi_{B_k}(\cdot)$ pro $n \in \mathbb{N}$, $c_k \in \mathbb{R}$ a $B_k \in \mathcal{M}$ pro všechna $k$.
|
||||||
|
Z linearity integrálu plyne (vytkneme sumu) $ \int_\Omega g(X(\omega) dP(\omega) = \int_{X^{-1}(B)} dP(\omega) = P[X^{-1}(B)]$.
|
||||||
|
|
||||||
|
Je-li $g$ nezáporná měřitelná, potom existuje posloupnost $g_n$ jednoduchých měřitelných funkcí takových, že $g_n \nearrow g$. Potom dle Léviho věty o monotonní konvergenci máme
|
||||||
|
$$\int_\Omega g[X(\omega)] dP(\omega) = \lim_{n\rightarrow\infty} \int_\Omega g_n[X(\omega)] dP(\omega) $$
|
||||||
|
$$ = \lim_{n\rightarrow\infty} \int_\mathbb{M} g_n(x) dP_X(x) = \int_\mathbb{M} g(x) dP_X(x),$$
|
||||||
|
kde třetí rovnost plyne z již dokázané části pro jednoduché měřitelné funkce.
|
||||||
|
|
||||||
|
Nakonec, pro $g$ měřitelnou existuje rozklad $g = g^+ - g^-$ takový, že $g^+, g^-$ jsou nezáporné měřitelné, tedy požadované tvrzení plyne z části pro nezáporné měřitelné funkce.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
Na závěr poznamenejme, že se nám budou obzvlášť hodit volby $(\mathbb{M}, \mathcal{M}) = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ pro $n \geq 1$.
|
Na závěr poznamenejme, že se nám budou obzvlášť hodit volby $(\mathbb{M}, \mathcal{M}) = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ pro $n \geq 1$.
|
||||||
|
|
||||||
Připomeňme si, že jsou-li $\mu, \nu$ dvě $\sigma$-konečné míry na $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a je-li $\nu << \mu$ (tedy $\mu(B) = 0$ implikuje $\nu(B) = 0$), potom z Radonovy-Nikodymovy věty plyne existence nezáporné měřitelné funkce $f$ takové, že $\nu(B) = \int_\mathbb{R} fd\mu$ pro všechna $B \in \mathcal{B}$. Této funkci $f$ říkáme Radonova-Nikodymova derivace a píšeme $f = \frac{d\nu}{d\mu}$. Taková funkce $f$ je navíc určena jednoznačně až na množinu $\mu$-míry $0$.
|
Připomeňme si, že jsou-li $\mu, \nu$ dvě $\sigma$-konečné míry na $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ a je-li $\nu << \mu$ (tedy $\mu(B) = 0$ implikuje $\nu(B) = 0$), potom z Radonovy-Nikodymovy věty plyne existence nezáporné měřitelné funkce $f$ takové, že $\nu(B) = \int_\mathbb{R} fd\mu$ pro všechna $B \in \mathcal{B}$. Této funkci $f$ říkáme Radonova-Nikodymova derivace a píšeme $f = \frac{d\nu}{d\mu}$. Taková funkce $f$ je navíc určena jednoznačně až na množinu $\mu$-míry $0$.
|
||||||
|
@ -70,11 +70,12 @@ Je třeba si dát pozor na to, aby zvolená referenční míra opravdu byla abso
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
Buď $X$ náhodná veličina a $P_X$ její rozdělení. Je-li $f_X$ hustota (rozdělení) vůči $\sigma$-konečné míře $\mu$, pak
|
Buď $X$ náhodná veličina a $P_X$ její rozdělení. Je-li $f_X$ hustota (rozdělení) vůči $\sigma$-konečné míře $\mu$, pak
|
||||||
$$P[X\in B] = \int_B f_X d\mu.$$
|
$$P[X\in B] = \int_B f_X d\mu.$$
|
||||||
\begin{proof}
|
|
||||||
Přímý důsledek Radonovy-Nikodymovy věty a vztahu mezi $P_X$ a $P$.
|
|
||||||
\end{proof}
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Jde o přímý důsledek Radonovy-Nikodymovy věty a vztahu mezi $P_X$ a $P$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
Další funkcí, která plně charakterizuje rozdělení náhodné veličiny je tzv. distribuční funkce.
|
Další funkcí, která plně charakterizuje rozdělení náhodné veličiny je tzv. distribuční funkce.
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
|
@ -125,17 +126,18 @@ Vidíme, že hustota odpovídá skokům distribuční funkce v daném bodě. V n
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
|
||||||
Navíc, každá funkce $F$ splňující body (i)-(iii) z této věty je distribuční funkcí nějaké náhodné veličiny.
|
Navíc, každá funkce $F$ splňující body (i)-(iii) z této věty je distribuční funkcí nějaké náhodné veličiny.
|
||||||
\begin{proof}
|
|
||||||
Dokážeme pouze implikaci o vlastnostech distribuční funkce, opačná implikace (existuje rozdělení) vyžaduje pokročilý matematický aparát z analýzy a teorie míry, který prozatím postrádáme.
|
|
||||||
|
|
||||||
\begin{enumerate}[(i)]
|
|
||||||
\item $F_X(a)= P[X \leq a]$. Bez újmy na obecnosti nechť $b > a$. Potom $F_X(b) = P[X \leq b] = P([X \leq a] \cup [a < X \leq b]) = P[X \leq a] + P[a < X \leq b]$ z aditivity míry, druhý sčítanec je nezáporný, tedy dostáváme požadované tvrzení.
|
|
||||||
\item Platí $\lim_{a\rightarrow -\infty} = \lim_{n\rightarrow\infty} F_X(-n) = \lim_{n\rightarrow\infty} P[X \in (-\infty, -n]] =: $\\$\lim_{n\rightarrow\infty} P[X \in A_n] = 0$. Poslední rovnost platí ze spojitosti míry (v prázdné množině), neboť platí $A_n \swarrow \emptyset$. Obdobně se ukáže tvrzení pro $a \rightarrow + \infty$ (cvičení).
|
|
||||||
\item Stačí uvažovat postoupnost $a_n = a + \frac{1}{n}$ pro $n \in \mathbb{N}$. Požadované tvrzení opět plyne z věty o spojitosti míry.
|
|
||||||
\end{enumerate}
|
|
||||||
\end{proof}
|
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Dokážeme pouze implikaci o vlastnostech distribuční funkce, opačná implikace (existuje rozdělení) vyžaduje pokročilý matematický aparát z analýzy a teorie míry, který prozatím postrádáme.
|
||||||
|
|
||||||
|
\begin{enumerate}[(i)]
|
||||||
|
\item $F_X(a)= P[X \leq a]$. Bez újmy na obecnosti nechť $b > a$. Potom $F_X(b) = P[X \leq b] = P([X \leq a] \cup [a < X \leq b]) = P[X \leq a] + P[a < X \leq b]$ z aditivity míry, druhý sčítanec je nezáporný, tedy dostáváme požadované tvrzení.
|
||||||
|
\item Platí $\lim_{a\rightarrow -\infty} = \lim_{n\rightarrow\infty} F_X(-n) = \lim_{n\rightarrow\infty} P[X \in (-\infty, -n]] =: $\\$\lim_{n\rightarrow\infty} P[X \in A_n] = 0$. Poslední rovnost platí ze spojitosti míry (v prázdné množině), neboť platí $A_n \swarrow \emptyset$. Obdobně se ukáže tvrzení pro $a \rightarrow + \infty$ (cvičení).
|
||||||
|
\item Stačí uvažovat postoupnost $a_n = a + \frac{1}{n}$ pro $n \in \mathbb{N}$. Požadované tvrzení opět plyne z věty o spojitosti míry.
|
||||||
|
\end{enumerate}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
Pro každou funkci $F$ splňující vlastnosti z předchozí věty existuje míra $\mu_F$ na $(\mathbb{R}, \mathcal{B})$ určená vztahem $\mu_F((-\infty, a]) = F(a)$ pro všechna $a$. Tato míra je konečná a platí $\mu_F((a, b]) = F(b) - F(b)$.
|
Pro každou funkci $F$ splňující vlastnosti z předchozí věty existuje míra $\mu_F$ na $(\mathbb{R}, \mathcal{B})$ určená vztahem $\mu_F((-\infty, a]) = F(a)$ pro všechna $a$. Tato míra je konečná a platí $\mu_F((a, b]) = F(b) - F(b)$.
|
||||||
|
|
||||||
\begin{definition}{\textbf{(Rozklad pravděpodobnostního rozdělení)}}
|
\begin{definition}{\textbf{(Rozklad pravděpodobnostního rozdělení)}}
|
||||||
|
@ -170,12 +172,13 @@ Ne každá veličina, se kterou se běžně setkáme je ryze spojitá nebo ryze
|
||||||
\item $P[X = a] = F_X(a) - F_X(a^-)$, kde $F_X(a^-)$ je limita zleva $\lim_{h\rightarrow 0^+} F_X(a - h)$ a odtud $P[a \leq X \leq b] = F_X(b) - F_X(a^-)$.
|
\item $P[X = a] = F_X(a) - F_X(a^-)$, kde $F_X(a^-)$ je limita zleva $\lim_{h\rightarrow 0^+} F_X(a - h)$ a odtud $P[a \leq X \leq b] = F_X(b) - F_X(a^-)$.
|
||||||
\item pro spojitou náhodnou veličinu platí $P[a\leq X \leq b] = P[a \leq X < b] = F_X(b) - F_X(a)$.
|
\item pro spojitou náhodnou veličinu platí $P[a\leq X \leq b] = P[a \leq X < b] = F_X(b) - F_X(a)$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\begin{proof}
|
|
||||||
Důkaz je jednoduchý, plyne z příslušných definic. Uvedeme např. důkaz pro bod (iii).
|
|
||||||
|
|
||||||
$P[X = a] = \lim_{h\rightarrow 0^+} P[a - h < X \leq a] = F_X(a) - \lim_{h\rightarrow 0^+} F_X(a - h)$.
|
|
||||||
\end{proof}
|
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
|
|
||||||
|
\begin{proof}
|
||||||
|
Důkaz je jednoduchý, plyne z příslušných definic. Uvedeme např. důkaz pro bod (iii).
|
||||||
|
|
||||||
|
$P[X = a] = \lim_{h\rightarrow 0^+} P[a - h < X \leq a] = F_X(a) - \lim_{h\rightarrow 0^+} F_X(a - h)$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\hfill \textit{konec 4. přednášky (25.2.2025)}
|
\hfill \textit{konec 4. přednášky (25.2.2025)}
|
||||||
|
|
||||||
|
|
BIN
skripta.pdf
BIN
skripta.pdf
Binary file not shown.
Loading…
Add table
Add a link
Reference in a new issue