oprava preklepu

This commit is contained in:
Petr Velička 2025-03-11 22:47:37 +01:00
parent 8f9e50fad4
commit ffb5b1a259
Signed by: petrvel
GPG key ID: E8F909AFE649174F
2 changed files with 1 additions and 1 deletions

View file

@ -102,7 +102,7 @@ V následující větě shrneme pár základních vlastností prostoru $\mathcal
\begin{proof}
Linearita plyne z věty o přenosu integrace (Věta \ref{thm-pushforward-measure}) a linearity Lebesgueova integrálu.
Dokážeme druhou vlastnost. Nejprve ukážeme, že hledaná střední hodnota je dobře definovaná. Uvažujme posloupnost funkcí $\{g_n: \mathbb{R}^d \rightarrow \mathbb{R}\}$ definovaných jako $g_n(\vec{x}) = \prod_{l = 1}^d |x_l| \chi_{\{|x_l| \leq n\}}$. Pak pro každé $n \in \mathbb{N}$ je $g_n(\vec{X})$ omezená existuje její první moment $\mathbb{E} [g_n(\vec{X})] \in \mathbb{R}$. Díky nezávislosti můžeme psát
Dokážeme druhou vlastnost. Nejprve ukážeme, že hledaná střední hodnota je dobře definovaná. Uvažujme posloupnost funkcí $\{g_n: \mathbb{R}^d \rightarrow \mathbb{R}\}$ definovaných jako $g_n(\vec{x}) = \prod_{l = 1}^d |x_l| \chi_{\{|x_l| \leq n\}}$. Pak pro každé $n \in \mathbb{N}$ je $g_n(\vec{X})$ omezená a existuje její první moment $\mathbb{E} [g_n(\vec{X})] \in \mathbb{R}$. Díky nezávislosti můžeme psát
$$ \mathbb{E} [g_n(\vec{X})] = \int_{\mathbb{R}^d} \prod_{l = 1}^d |x_l| \chi_{\{|x_l| \leq n\}} d(\otimes_{l = 1}^d P_{X_l}), $$
odkud z Fubiniovy věty a následně linearity integrálu plyne
$$ = \int_\mathbb{R} \cdots \int_\mathbb{R} \prod_{l = 1}^d |x_l| \chi_{\{|x_l| \leq n\}} dP_{X_1} \cdots dP_{X_d} = \prod_{l = 1}^d \mathbb{E}[|X_l| \chi_{\{|X_l| \leq n\}}] \leq \prod_{l = 1}^d \mathbb{E}[|X_l|]. $$